00. Work done by Force and Power
Work, Energy and Power

148809 A small body of mass $500 \mathrm{~g}$ moves on a rough horizontal surface before finally stops. The initial velocity of the body is $2 \mathrm{~m} / \mathrm{s}$ and coefficient of friction is 0.3 . Then, find absolute value of the average power developed by the frictional force during the time of motion. (Take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $1 \mathrm{~W}$
2 $1.5 \mathrm{~W}$
3 $2 \mathrm{~W}$
4 $2.5 \mathrm{~W}$
Work, Energy and Power

148810 Consider a drop of rain water having mass $1 \mathrm{~g}$ falling from a height of $1 \mathrm{~km}$. It hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$. Take $\mathrm{g}$ constant with a value of $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the (i) gravitational force and the (ii) resistive force of air is

1 (i) $-10 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
2 (i) $1.25 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
3 (i) $100 \mathrm{~J}$, (ii) $8.75 \mathrm{~J}$
4 (i) $10 \mathrm{~J}$, (ii) $-8.75 \mathrm{~J}$
Work, Energy and Power

148811 A body of mass $m$ accelerates uniformly from rest to $v_{1}$ in time $t_{1}$. The instantaneous power delivered to the body as a function of time

1 $\frac{m v_{1}^{2} t}{t_{1}}$
2 $\frac{\mathrm{mv}_{1} \mathrm{t}}{\mathrm{t}_{1}}$
3 $\frac{\mathrm{mv}_{1} \mathrm{t}^{2}}{\mathrm{t}_{1}}$
4 $\frac{m v_{1}^{2} t}{t^{2}}$
Work, Energy and Power

148812 If a particle's position is given by $x=4-12 t+$ $3 t^{2}$ where $t$ is in the seconds and $x$ in meters. What is its velocity at $t=1 \mathrm{~s}$ ? Whether the particle is moving in $+\mathbf{x}$ direction or $-\mathbf{x}$ direction?

1 $-6 \mathrm{~m} / \mathrm{s},+\mathrm{x}$ direction
2 $-6 \mathrm{~m} / \mathrm{s},-\mathrm{x}$ direction
3 $6 \mathrm{~m} / \mathrm{s},+x$ direction
4 $4 \mathrm{~m} / \mathrm{s},-x$ direction
Work, Energy and Power

148813 A balloon has a mass of 10 gram in air. The air escapes from the balloon at a uniform rate with a velocity of $5 \mathrm{~cm} / \mathrm{s}$ and the balloon shrinks completely in $2.5 \mathrm{~s}$. The average force acting on the balloon will be

1 200 dyne
2 20 dyne
3 20 Newton
4 2000]**# dyne
Work, Energy and Power

148809 A small body of mass $500 \mathrm{~g}$ moves on a rough horizontal surface before finally stops. The initial velocity of the body is $2 \mathrm{~m} / \mathrm{s}$ and coefficient of friction is 0.3 . Then, find absolute value of the average power developed by the frictional force during the time of motion. (Take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $1 \mathrm{~W}$
2 $1.5 \mathrm{~W}$
3 $2 \mathrm{~W}$
4 $2.5 \mathrm{~W}$
Work, Energy and Power

148810 Consider a drop of rain water having mass $1 \mathrm{~g}$ falling from a height of $1 \mathrm{~km}$. It hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$. Take $\mathrm{g}$ constant with a value of $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the (i) gravitational force and the (ii) resistive force of air is

1 (i) $-10 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
2 (i) $1.25 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
3 (i) $100 \mathrm{~J}$, (ii) $8.75 \mathrm{~J}$
4 (i) $10 \mathrm{~J}$, (ii) $-8.75 \mathrm{~J}$
Work, Energy and Power

148811 A body of mass $m$ accelerates uniformly from rest to $v_{1}$ in time $t_{1}$. The instantaneous power delivered to the body as a function of time

1 $\frac{m v_{1}^{2} t}{t_{1}}$
2 $\frac{\mathrm{mv}_{1} \mathrm{t}}{\mathrm{t}_{1}}$
3 $\frac{\mathrm{mv}_{1} \mathrm{t}^{2}}{\mathrm{t}_{1}}$
4 $\frac{m v_{1}^{2} t}{t^{2}}$
Work, Energy and Power

148812 If a particle's position is given by $x=4-12 t+$ $3 t^{2}$ where $t$ is in the seconds and $x$ in meters. What is its velocity at $t=1 \mathrm{~s}$ ? Whether the particle is moving in $+\mathbf{x}$ direction or $-\mathbf{x}$ direction?

1 $-6 \mathrm{~m} / \mathrm{s},+\mathrm{x}$ direction
2 $-6 \mathrm{~m} / \mathrm{s},-\mathrm{x}$ direction
3 $6 \mathrm{~m} / \mathrm{s},+x$ direction
4 $4 \mathrm{~m} / \mathrm{s},-x$ direction
Work, Energy and Power

148813 A balloon has a mass of 10 gram in air. The air escapes from the balloon at a uniform rate with a velocity of $5 \mathrm{~cm} / \mathrm{s}$ and the balloon shrinks completely in $2.5 \mathrm{~s}$. The average force acting on the balloon will be

1 200 dyne
2 20 dyne
3 20 Newton
4 2000]**# dyne
Work, Energy and Power

148809 A small body of mass $500 \mathrm{~g}$ moves on a rough horizontal surface before finally stops. The initial velocity of the body is $2 \mathrm{~m} / \mathrm{s}$ and coefficient of friction is 0.3 . Then, find absolute value of the average power developed by the frictional force during the time of motion. (Take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $1 \mathrm{~W}$
2 $1.5 \mathrm{~W}$
3 $2 \mathrm{~W}$
4 $2.5 \mathrm{~W}$
Work, Energy and Power

148810 Consider a drop of rain water having mass $1 \mathrm{~g}$ falling from a height of $1 \mathrm{~km}$. It hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$. Take $\mathrm{g}$ constant with a value of $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the (i) gravitational force and the (ii) resistive force of air is

1 (i) $-10 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
2 (i) $1.25 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
3 (i) $100 \mathrm{~J}$, (ii) $8.75 \mathrm{~J}$
4 (i) $10 \mathrm{~J}$, (ii) $-8.75 \mathrm{~J}$
Work, Energy and Power

148811 A body of mass $m$ accelerates uniformly from rest to $v_{1}$ in time $t_{1}$. The instantaneous power delivered to the body as a function of time

1 $\frac{m v_{1}^{2} t}{t_{1}}$
2 $\frac{\mathrm{mv}_{1} \mathrm{t}}{\mathrm{t}_{1}}$
3 $\frac{\mathrm{mv}_{1} \mathrm{t}^{2}}{\mathrm{t}_{1}}$
4 $\frac{m v_{1}^{2} t}{t^{2}}$
Work, Energy and Power

148812 If a particle's position is given by $x=4-12 t+$ $3 t^{2}$ where $t$ is in the seconds and $x$ in meters. What is its velocity at $t=1 \mathrm{~s}$ ? Whether the particle is moving in $+\mathbf{x}$ direction or $-\mathbf{x}$ direction?

1 $-6 \mathrm{~m} / \mathrm{s},+\mathrm{x}$ direction
2 $-6 \mathrm{~m} / \mathrm{s},-\mathrm{x}$ direction
3 $6 \mathrm{~m} / \mathrm{s},+x$ direction
4 $4 \mathrm{~m} / \mathrm{s},-x$ direction
Work, Energy and Power

148813 A balloon has a mass of 10 gram in air. The air escapes from the balloon at a uniform rate with a velocity of $5 \mathrm{~cm} / \mathrm{s}$ and the balloon shrinks completely in $2.5 \mathrm{~s}$. The average force acting on the balloon will be

1 200 dyne
2 20 dyne
3 20 Newton
4 2000]**# dyne
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

148809 A small body of mass $500 \mathrm{~g}$ moves on a rough horizontal surface before finally stops. The initial velocity of the body is $2 \mathrm{~m} / \mathrm{s}$ and coefficient of friction is 0.3 . Then, find absolute value of the average power developed by the frictional force during the time of motion. (Take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $1 \mathrm{~W}$
2 $1.5 \mathrm{~W}$
3 $2 \mathrm{~W}$
4 $2.5 \mathrm{~W}$
Work, Energy and Power

148810 Consider a drop of rain water having mass $1 \mathrm{~g}$ falling from a height of $1 \mathrm{~km}$. It hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$. Take $\mathrm{g}$ constant with a value of $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the (i) gravitational force and the (ii) resistive force of air is

1 (i) $-10 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
2 (i) $1.25 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
3 (i) $100 \mathrm{~J}$, (ii) $8.75 \mathrm{~J}$
4 (i) $10 \mathrm{~J}$, (ii) $-8.75 \mathrm{~J}$
Work, Energy and Power

148811 A body of mass $m$ accelerates uniformly from rest to $v_{1}$ in time $t_{1}$. The instantaneous power delivered to the body as a function of time

1 $\frac{m v_{1}^{2} t}{t_{1}}$
2 $\frac{\mathrm{mv}_{1} \mathrm{t}}{\mathrm{t}_{1}}$
3 $\frac{\mathrm{mv}_{1} \mathrm{t}^{2}}{\mathrm{t}_{1}}$
4 $\frac{m v_{1}^{2} t}{t^{2}}$
Work, Energy and Power

148812 If a particle's position is given by $x=4-12 t+$ $3 t^{2}$ where $t$ is in the seconds and $x$ in meters. What is its velocity at $t=1 \mathrm{~s}$ ? Whether the particle is moving in $+\mathbf{x}$ direction or $-\mathbf{x}$ direction?

1 $-6 \mathrm{~m} / \mathrm{s},+\mathrm{x}$ direction
2 $-6 \mathrm{~m} / \mathrm{s},-\mathrm{x}$ direction
3 $6 \mathrm{~m} / \mathrm{s},+x$ direction
4 $4 \mathrm{~m} / \mathrm{s},-x$ direction
Work, Energy and Power

148813 A balloon has a mass of 10 gram in air. The air escapes from the balloon at a uniform rate with a velocity of $5 \mathrm{~cm} / \mathrm{s}$ and the balloon shrinks completely in $2.5 \mathrm{~s}$. The average force acting on the balloon will be

1 200 dyne
2 20 dyne
3 20 Newton
4 2000]**# dyne
Work, Energy and Power

148809 A small body of mass $500 \mathrm{~g}$ moves on a rough horizontal surface before finally stops. The initial velocity of the body is $2 \mathrm{~m} / \mathrm{s}$ and coefficient of friction is 0.3 . Then, find absolute value of the average power developed by the frictional force during the time of motion. (Take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$ )

1 $1 \mathrm{~W}$
2 $1.5 \mathrm{~W}$
3 $2 \mathrm{~W}$
4 $2.5 \mathrm{~W}$
Work, Energy and Power

148810 Consider a drop of rain water having mass $1 \mathrm{~g}$ falling from a height of $1 \mathrm{~km}$. It hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$. Take $\mathrm{g}$ constant with a value of $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the (i) gravitational force and the (ii) resistive force of air is

1 (i) $-10 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
2 (i) $1.25 \mathrm{~J}$, (ii) $-8.25 \mathrm{~J}$
3 (i) $100 \mathrm{~J}$, (ii) $8.75 \mathrm{~J}$
4 (i) $10 \mathrm{~J}$, (ii) $-8.75 \mathrm{~J}$
Work, Energy and Power

148811 A body of mass $m$ accelerates uniformly from rest to $v_{1}$ in time $t_{1}$. The instantaneous power delivered to the body as a function of time

1 $\frac{m v_{1}^{2} t}{t_{1}}$
2 $\frac{\mathrm{mv}_{1} \mathrm{t}}{\mathrm{t}_{1}}$
3 $\frac{\mathrm{mv}_{1} \mathrm{t}^{2}}{\mathrm{t}_{1}}$
4 $\frac{m v_{1}^{2} t}{t^{2}}$
Work, Energy and Power

148812 If a particle's position is given by $x=4-12 t+$ $3 t^{2}$ where $t$ is in the seconds and $x$ in meters. What is its velocity at $t=1 \mathrm{~s}$ ? Whether the particle is moving in $+\mathbf{x}$ direction or $-\mathbf{x}$ direction?

1 $-6 \mathrm{~m} / \mathrm{s},+\mathrm{x}$ direction
2 $-6 \mathrm{~m} / \mathrm{s},-\mathrm{x}$ direction
3 $6 \mathrm{~m} / \mathrm{s},+x$ direction
4 $4 \mathrm{~m} / \mathrm{s},-x$ direction
Work, Energy and Power

148813 A balloon has a mass of 10 gram in air. The air escapes from the balloon at a uniform rate with a velocity of $5 \mathrm{~cm} / \mathrm{s}$ and the balloon shrinks completely in $2.5 \mathrm{~s}$. The average force acting on the balloon will be

1 200 dyne
2 20 dyne
3 20 Newton
4 2000]**# dyne