00. Work done by Force and Power
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

148760 $\quad(60 \hat{\mathbf{i}}+15 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \mathbf{N}$ force produces a velocity $(2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})$ in a particle. The value of power at that time will be

1 $45 \mathrm{~W}$
2 $95 \mathrm{~W}$
3 $75 \mathrm{~W}$
4 $100 \mathrm{~W}$
Work, Energy and Power

148761 Brakes stop a train in a certain distance $x$. If the force of these brakes is reduced to one fourth of its original force, the train needs - the original distance $x$ to stop.

1 Double
2 Half
3 Four Times
4 Same
Work, Energy and Power

148765 A Diwali cracker release 25 gram gas per second, with a speed of $400 \mathrm{~ms}^{-1}$ after explosion. The force exerted by gas on the cracker is

1 16 newton
2 100 dyne
3 10,000 dyne
4 10 newton
Work, Energy and Power

148766 A body of mass ' $m$ ' begins to move under the action of time dependent force $\overrightarrow{\mathbf{F}}=\left(\mathbf{t} \hat{\mathbf{i}}+\mathbf{2 t ^ { 2 }} \hat{\mathbf{j}}\right) \mathbf{N}$ where $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are unit vectors along $X$ and $Y$ axis respectively. The power developed by the force in watt at time $t$ is

1 $\left(\frac{t^{2}}{3 m}+\frac{3 t^{4}}{4 m}\right)$
2 $\left(\frac{\mathrm{t}^{3}}{\mathrm{~m}}+\frac{4 \mathrm{t}^{5}}{2 \mathrm{~m}}\right)$
3 $\left(\frac{t^{2}}{2 m}+\frac{3 t^{4}}{5 m}\right)$
4 $\left(\frac{t^{3}}{2 m}+\frac{4 t^{5}}{3 m}\right)$
Work, Energy and Power

148760 $\quad(60 \hat{\mathbf{i}}+15 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \mathbf{N}$ force produces a velocity $(2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})$ in a particle. The value of power at that time will be

1 $45 \mathrm{~W}$
2 $95 \mathrm{~W}$
3 $75 \mathrm{~W}$
4 $100 \mathrm{~W}$
Work, Energy and Power

148761 Brakes stop a train in a certain distance $x$. If the force of these brakes is reduced to one fourth of its original force, the train needs - the original distance $x$ to stop.

1 Double
2 Half
3 Four Times
4 Same
Work, Energy and Power

148765 A Diwali cracker release 25 gram gas per second, with a speed of $400 \mathrm{~ms}^{-1}$ after explosion. The force exerted by gas on the cracker is

1 16 newton
2 100 dyne
3 10,000 dyne
4 10 newton
Work, Energy and Power

148766 A body of mass ' $m$ ' begins to move under the action of time dependent force $\overrightarrow{\mathbf{F}}=\left(\mathbf{t} \hat{\mathbf{i}}+\mathbf{2 t ^ { 2 }} \hat{\mathbf{j}}\right) \mathbf{N}$ where $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are unit vectors along $X$ and $Y$ axis respectively. The power developed by the force in watt at time $t$ is

1 $\left(\frac{t^{2}}{3 m}+\frac{3 t^{4}}{4 m}\right)$
2 $\left(\frac{\mathrm{t}^{3}}{\mathrm{~m}}+\frac{4 \mathrm{t}^{5}}{2 \mathrm{~m}}\right)$
3 $\left(\frac{t^{2}}{2 m}+\frac{3 t^{4}}{5 m}\right)$
4 $\left(\frac{t^{3}}{2 m}+\frac{4 t^{5}}{3 m}\right)$
Work, Energy and Power

148760 $\quad(60 \hat{\mathbf{i}}+15 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \mathbf{N}$ force produces a velocity $(2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})$ in a particle. The value of power at that time will be

1 $45 \mathrm{~W}$
2 $95 \mathrm{~W}$
3 $75 \mathrm{~W}$
4 $100 \mathrm{~W}$
Work, Energy and Power

148761 Brakes stop a train in a certain distance $x$. If the force of these brakes is reduced to one fourth of its original force, the train needs - the original distance $x$ to stop.

1 Double
2 Half
3 Four Times
4 Same
Work, Energy and Power

148765 A Diwali cracker release 25 gram gas per second, with a speed of $400 \mathrm{~ms}^{-1}$ after explosion. The force exerted by gas on the cracker is

1 16 newton
2 100 dyne
3 10,000 dyne
4 10 newton
Work, Energy and Power

148766 A body of mass ' $m$ ' begins to move under the action of time dependent force $\overrightarrow{\mathbf{F}}=\left(\mathbf{t} \hat{\mathbf{i}}+\mathbf{2 t ^ { 2 }} \hat{\mathbf{j}}\right) \mathbf{N}$ where $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are unit vectors along $X$ and $Y$ axis respectively. The power developed by the force in watt at time $t$ is

1 $\left(\frac{t^{2}}{3 m}+\frac{3 t^{4}}{4 m}\right)$
2 $\left(\frac{\mathrm{t}^{3}}{\mathrm{~m}}+\frac{4 \mathrm{t}^{5}}{2 \mathrm{~m}}\right)$
3 $\left(\frac{t^{2}}{2 m}+\frac{3 t^{4}}{5 m}\right)$
4 $\left(\frac{t^{3}}{2 m}+\frac{4 t^{5}}{3 m}\right)$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

148760 $\quad(60 \hat{\mathbf{i}}+15 \hat{\mathbf{j}}-3 \hat{\mathbf{k}}) \mathbf{N}$ force produces a velocity $(2 \hat{\mathbf{i}}-4 \hat{\mathbf{j}}+5 \hat{\mathbf{k}})$ in a particle. The value of power at that time will be

1 $45 \mathrm{~W}$
2 $95 \mathrm{~W}$
3 $75 \mathrm{~W}$
4 $100 \mathrm{~W}$
Work, Energy and Power

148761 Brakes stop a train in a certain distance $x$. If the force of these brakes is reduced to one fourth of its original force, the train needs - the original distance $x$ to stop.

1 Double
2 Half
3 Four Times
4 Same
Work, Energy and Power

148765 A Diwali cracker release 25 gram gas per second, with a speed of $400 \mathrm{~ms}^{-1}$ after explosion. The force exerted by gas on the cracker is

1 16 newton
2 100 dyne
3 10,000 dyne
4 10 newton
Work, Energy and Power

148766 A body of mass ' $m$ ' begins to move under the action of time dependent force $\overrightarrow{\mathbf{F}}=\left(\mathbf{t} \hat{\mathbf{i}}+\mathbf{2 t ^ { 2 }} \hat{\mathbf{j}}\right) \mathbf{N}$ where $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ are unit vectors along $X$ and $Y$ axis respectively. The power developed by the force in watt at time $t$ is

1 $\left(\frac{t^{2}}{3 m}+\frac{3 t^{4}}{4 m}\right)$
2 $\left(\frac{\mathrm{t}^{3}}{\mathrm{~m}}+\frac{4 \mathrm{t}^{5}}{2 \mathrm{~m}}\right)$
3 $\left(\frac{t^{2}}{2 m}+\frac{3 t^{4}}{5 m}\right)$
4 $\left(\frac{t^{3}}{2 m}+\frac{4 t^{5}}{3 m}\right)$