00. Work done by Force and Power
Work, Energy and Power

148753 A force acts on a body of mass $15 \mathrm{~kg}$, initially at rest. If the instantaneous power due to the force at the end of the third second is $5 \mathrm{~W}$ then the instantaneous power (in $W$ ) at the end of the fourth second will be

1 6.33
2 6.67
3 6.29
4 6.94
Work, Energy and Power

148754 A horizontal force $\overrightarrow{\mathbf{F}}=\left(\mathrm{g}-\mathrm{x}^{2}\right) \hat{\mathbf{i}} \mathbf{N}$ acts on a wooden block resting on a horizontal smooth surface. The work done to move the block from $x=0$ to $x=3 \mathrm{~m}$ (in Joule) is (use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ ):

1 24
2 35
3 30
4 21
Work, Energy and Power

148755 A rod of length $L$ can rotate about end $O$. What is the work done if the rod is rotated by $180^{\circ}$.

1 $\mathrm{MgL}$
2 $\frac{\mathrm{MgL}}{2}$
3 $\frac{3}{4} \mathrm{MgL}$
4 $\frac{1}{4} \mathrm{MgL}$
Work, Energy and Power

148756 A uniform thin rod of length $L$, mass $m$ is lying on a smooth horizontal table. A horizontal impulse $P$ is suddenly applied perpendicular to the rod at one end. The total energy of the rod after the impulse is

1 $\frac{\mathrm{P}^{2}}{\mathrm{M}}$
2 $\frac{7 \mathrm{P}^{2}}{8 \mathrm{M}}$
3 $\frac{13 \mathrm{P}^{2}}{2 \mathrm{M}}$
4 $\frac{2 \mathrm{P}^{2}}{\mathrm{M}}$
Work, Energy and Power

148758 If a force $\overrightarrow{\mathrm{F}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ acting on a particle displaces it from $(1,1,1)$ to $(2,-1,0)$, then the work done by the force (in units of work) is

1 2
2 1
3 5
4 4
5 9
Work, Energy and Power

148753 A force acts on a body of mass $15 \mathrm{~kg}$, initially at rest. If the instantaneous power due to the force at the end of the third second is $5 \mathrm{~W}$ then the instantaneous power (in $W$ ) at the end of the fourth second will be

1 6.33
2 6.67
3 6.29
4 6.94
Work, Energy and Power

148754 A horizontal force $\overrightarrow{\mathbf{F}}=\left(\mathrm{g}-\mathrm{x}^{2}\right) \hat{\mathbf{i}} \mathbf{N}$ acts on a wooden block resting on a horizontal smooth surface. The work done to move the block from $x=0$ to $x=3 \mathrm{~m}$ (in Joule) is (use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ ):

1 24
2 35
3 30
4 21
Work, Energy and Power

148755 A rod of length $L$ can rotate about end $O$. What is the work done if the rod is rotated by $180^{\circ}$.

1 $\mathrm{MgL}$
2 $\frac{\mathrm{MgL}}{2}$
3 $\frac{3}{4} \mathrm{MgL}$
4 $\frac{1}{4} \mathrm{MgL}$
Work, Energy and Power

148756 A uniform thin rod of length $L$, mass $m$ is lying on a smooth horizontal table. A horizontal impulse $P$ is suddenly applied perpendicular to the rod at one end. The total energy of the rod after the impulse is

1 $\frac{\mathrm{P}^{2}}{\mathrm{M}}$
2 $\frac{7 \mathrm{P}^{2}}{8 \mathrm{M}}$
3 $\frac{13 \mathrm{P}^{2}}{2 \mathrm{M}}$
4 $\frac{2 \mathrm{P}^{2}}{\mathrm{M}}$
Work, Energy and Power

148758 If a force $\overrightarrow{\mathrm{F}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ acting on a particle displaces it from $(1,1,1)$ to $(2,-1,0)$, then the work done by the force (in units of work) is

1 2
2 1
3 5
4 4
5 9
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Work, Energy and Power

148753 A force acts on a body of mass $15 \mathrm{~kg}$, initially at rest. If the instantaneous power due to the force at the end of the third second is $5 \mathrm{~W}$ then the instantaneous power (in $W$ ) at the end of the fourth second will be

1 6.33
2 6.67
3 6.29
4 6.94
Work, Energy and Power

148754 A horizontal force $\overrightarrow{\mathbf{F}}=\left(\mathrm{g}-\mathrm{x}^{2}\right) \hat{\mathbf{i}} \mathbf{N}$ acts on a wooden block resting on a horizontal smooth surface. The work done to move the block from $x=0$ to $x=3 \mathrm{~m}$ (in Joule) is (use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ ):

1 24
2 35
3 30
4 21
Work, Energy and Power

148755 A rod of length $L$ can rotate about end $O$. What is the work done if the rod is rotated by $180^{\circ}$.

1 $\mathrm{MgL}$
2 $\frac{\mathrm{MgL}}{2}$
3 $\frac{3}{4} \mathrm{MgL}$
4 $\frac{1}{4} \mathrm{MgL}$
Work, Energy and Power

148756 A uniform thin rod of length $L$, mass $m$ is lying on a smooth horizontal table. A horizontal impulse $P$ is suddenly applied perpendicular to the rod at one end. The total energy of the rod after the impulse is

1 $\frac{\mathrm{P}^{2}}{\mathrm{M}}$
2 $\frac{7 \mathrm{P}^{2}}{8 \mathrm{M}}$
3 $\frac{13 \mathrm{P}^{2}}{2 \mathrm{M}}$
4 $\frac{2 \mathrm{P}^{2}}{\mathrm{M}}$
Work, Energy and Power

148758 If a force $\overrightarrow{\mathrm{F}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ acting on a particle displaces it from $(1,1,1)$ to $(2,-1,0)$, then the work done by the force (in units of work) is

1 2
2 1
3 5
4 4
5 9
Work, Energy and Power

148753 A force acts on a body of mass $15 \mathrm{~kg}$, initially at rest. If the instantaneous power due to the force at the end of the third second is $5 \mathrm{~W}$ then the instantaneous power (in $W$ ) at the end of the fourth second will be

1 6.33
2 6.67
3 6.29
4 6.94
Work, Energy and Power

148754 A horizontal force $\overrightarrow{\mathbf{F}}=\left(\mathrm{g}-\mathrm{x}^{2}\right) \hat{\mathbf{i}} \mathbf{N}$ acts on a wooden block resting on a horizontal smooth surface. The work done to move the block from $x=0$ to $x=3 \mathrm{~m}$ (in Joule) is (use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ ):

1 24
2 35
3 30
4 21
Work, Energy and Power

148755 A rod of length $L$ can rotate about end $O$. What is the work done if the rod is rotated by $180^{\circ}$.

1 $\mathrm{MgL}$
2 $\frac{\mathrm{MgL}}{2}$
3 $\frac{3}{4} \mathrm{MgL}$
4 $\frac{1}{4} \mathrm{MgL}$
Work, Energy and Power

148756 A uniform thin rod of length $L$, mass $m$ is lying on a smooth horizontal table. A horizontal impulse $P$ is suddenly applied perpendicular to the rod at one end. The total energy of the rod after the impulse is

1 $\frac{\mathrm{P}^{2}}{\mathrm{M}}$
2 $\frac{7 \mathrm{P}^{2}}{8 \mathrm{M}}$
3 $\frac{13 \mathrm{P}^{2}}{2 \mathrm{M}}$
4 $\frac{2 \mathrm{P}^{2}}{\mathrm{M}}$
Work, Energy and Power

148758 If a force $\overrightarrow{\mathrm{F}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ acting on a particle displaces it from $(1,1,1)$ to $(2,-1,0)$, then the work done by the force (in units of work) is

1 2
2 1
3 5
4 4
5 9
Work, Energy and Power

148753 A force acts on a body of mass $15 \mathrm{~kg}$, initially at rest. If the instantaneous power due to the force at the end of the third second is $5 \mathrm{~W}$ then the instantaneous power (in $W$ ) at the end of the fourth second will be

1 6.33
2 6.67
3 6.29
4 6.94
Work, Energy and Power

148754 A horizontal force $\overrightarrow{\mathbf{F}}=\left(\mathrm{g}-\mathrm{x}^{2}\right) \hat{\mathbf{i}} \mathbf{N}$ acts on a wooden block resting on a horizontal smooth surface. The work done to move the block from $x=0$ to $x=3 \mathrm{~m}$ (in Joule) is (use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ ):

1 24
2 35
3 30
4 21
Work, Energy and Power

148755 A rod of length $L$ can rotate about end $O$. What is the work done if the rod is rotated by $180^{\circ}$.

1 $\mathrm{MgL}$
2 $\frac{\mathrm{MgL}}{2}$
3 $\frac{3}{4} \mathrm{MgL}$
4 $\frac{1}{4} \mathrm{MgL}$
Work, Energy and Power

148756 A uniform thin rod of length $L$, mass $m$ is lying on a smooth horizontal table. A horizontal impulse $P$ is suddenly applied perpendicular to the rod at one end. The total energy of the rod after the impulse is

1 $\frac{\mathrm{P}^{2}}{\mathrm{M}}$
2 $\frac{7 \mathrm{P}^{2}}{8 \mathrm{M}}$
3 $\frac{13 \mathrm{P}^{2}}{2 \mathrm{M}}$
4 $\frac{2 \mathrm{P}^{2}}{\mathrm{M}}$
Work, Energy and Power

148758 If a force $\overrightarrow{\mathrm{F}}=\hat{\mathrm{i}}-2 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ acting on a particle displaces it from $(1,1,1)$ to $(2,-1,0)$, then the work done by the force (in units of work) is

1 2
2 1
3 5
4 4
5 9