00. Work done by Force and Power
Work, Energy and Power

148736 Arrange the four graphs in descending order of total work done; where $W_{1}, W_{2}, W_{3}$ and $W_{4}$ are the work done corresponding to figure $a, b, c$ and $d$ respectively.

1 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{1}>\mathrm{W}_{4}$
2 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{4}>\mathrm{W}_{1}$
3 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{4}>\mathrm{W}_{1}$
4 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{1}>\mathrm{W}_{4}$
Work, Energy and Power

148737 A block of mass $m=2 \mathrm{~kg}$ is pulled by a force $F$ $=40 \mathrm{~N}$ upwards through a height $\mathrm{h}=2 \mathrm{~m}$. The work done by its weight is.

1 $-40 \mathrm{~J}$
2 $60 \mathrm{~J}$
3 $80 \mathrm{~J}$
4 $-60 \mathrm{~J}$
Work, Energy and Power

148738 A ball of mass $1 \mathrm{~kg}$ moves in a straight line with velocity $v=\mathrm{cx}^{\alpha}$. where $\mathrm{c}=1$ (SI unit) and $\alpha$ is a constant. If the work done by the net force during its displacement from $x=0$ to $x=$ $4 \mathrm{~m}$ is 128 Joule, then the $\alpha$ is

1 1
2 $\frac{3}{2}$
3 2
4 $\frac{1}{2}$
Work, Energy and Power

148740 A stream of water flowing horizontally with a speed of $15 \mathrm{~ms}^{-1}$ gushes out of a tube of crosssectional area $10^{-2} \mathrm{~m}^{2}$ and hits a vertical wall nearby. The force exerted on the wall by the impact of water, assuming it does not rebound. is

1 $2.25 \times 10^{3} \mathrm{~N}$
2 $2.50 \times 10^{3} \mathrm{~N}$
3 $3.0 \times 10^{3} \mathrm{~N}$
4 $3.5 \times 10^{3} \mathrm{~N}$
Work, Energy and Power

148742 If the engine of a train of mass $2.05 \times 10^{6} \mathrm{~kg}$ requires a duration of 7 minutes for changing its velocity from $5 \mathrm{~m} . \mathrm{s}^{-1}$ to $25 \mathrm{~m} . \mathrm{s}^{-1}$ find the power of the engine.

1 $1.46 \times 10^{6} \mathrm{~W}$
2 $2.05 \times 10^{6} \mathrm{~W}$
3 $5 \times 10^{-3} \mathrm{~W}$
4 $2.5 \times 10^{3} \mathrm{~W}$
Work, Energy and Power

148736 Arrange the four graphs in descending order of total work done; where $W_{1}, W_{2}, W_{3}$ and $W_{4}$ are the work done corresponding to figure $a, b, c$ and $d$ respectively.

1 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{1}>\mathrm{W}_{4}$
2 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{4}>\mathrm{W}_{1}$
3 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{4}>\mathrm{W}_{1}$
4 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{1}>\mathrm{W}_{4}$
Work, Energy and Power

148737 A block of mass $m=2 \mathrm{~kg}$ is pulled by a force $F$ $=40 \mathrm{~N}$ upwards through a height $\mathrm{h}=2 \mathrm{~m}$. The work done by its weight is.

1 $-40 \mathrm{~J}$
2 $60 \mathrm{~J}$
3 $80 \mathrm{~J}$
4 $-60 \mathrm{~J}$
Work, Energy and Power

148738 A ball of mass $1 \mathrm{~kg}$ moves in a straight line with velocity $v=\mathrm{cx}^{\alpha}$. where $\mathrm{c}=1$ (SI unit) and $\alpha$ is a constant. If the work done by the net force during its displacement from $x=0$ to $x=$ $4 \mathrm{~m}$ is 128 Joule, then the $\alpha$ is

1 1
2 $\frac{3}{2}$
3 2
4 $\frac{1}{2}$
Work, Energy and Power

148740 A stream of water flowing horizontally with a speed of $15 \mathrm{~ms}^{-1}$ gushes out of a tube of crosssectional area $10^{-2} \mathrm{~m}^{2}$ and hits a vertical wall nearby. The force exerted on the wall by the impact of water, assuming it does not rebound. is

1 $2.25 \times 10^{3} \mathrm{~N}$
2 $2.50 \times 10^{3} \mathrm{~N}$
3 $3.0 \times 10^{3} \mathrm{~N}$
4 $3.5 \times 10^{3} \mathrm{~N}$
Work, Energy and Power

148742 If the engine of a train of mass $2.05 \times 10^{6} \mathrm{~kg}$ requires a duration of 7 minutes for changing its velocity from $5 \mathrm{~m} . \mathrm{s}^{-1}$ to $25 \mathrm{~m} . \mathrm{s}^{-1}$ find the power of the engine.

1 $1.46 \times 10^{6} \mathrm{~W}$
2 $2.05 \times 10^{6} \mathrm{~W}$
3 $5 \times 10^{-3} \mathrm{~W}$
4 $2.5 \times 10^{3} \mathrm{~W}$
Work, Energy and Power

148736 Arrange the four graphs in descending order of total work done; where $W_{1}, W_{2}, W_{3}$ and $W_{4}$ are the work done corresponding to figure $a, b, c$ and $d$ respectively.

1 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{1}>\mathrm{W}_{4}$
2 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{4}>\mathrm{W}_{1}$
3 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{4}>\mathrm{W}_{1}$
4 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{1}>\mathrm{W}_{4}$
Work, Energy and Power

148737 A block of mass $m=2 \mathrm{~kg}$ is pulled by a force $F$ $=40 \mathrm{~N}$ upwards through a height $\mathrm{h}=2 \mathrm{~m}$. The work done by its weight is.

1 $-40 \mathrm{~J}$
2 $60 \mathrm{~J}$
3 $80 \mathrm{~J}$
4 $-60 \mathrm{~J}$
Work, Energy and Power

148738 A ball of mass $1 \mathrm{~kg}$ moves in a straight line with velocity $v=\mathrm{cx}^{\alpha}$. where $\mathrm{c}=1$ (SI unit) and $\alpha$ is a constant. If the work done by the net force during its displacement from $x=0$ to $x=$ $4 \mathrm{~m}$ is 128 Joule, then the $\alpha$ is

1 1
2 $\frac{3}{2}$
3 2
4 $\frac{1}{2}$
Work, Energy and Power

148740 A stream of water flowing horizontally with a speed of $15 \mathrm{~ms}^{-1}$ gushes out of a tube of crosssectional area $10^{-2} \mathrm{~m}^{2}$ and hits a vertical wall nearby. The force exerted on the wall by the impact of water, assuming it does not rebound. is

1 $2.25 \times 10^{3} \mathrm{~N}$
2 $2.50 \times 10^{3} \mathrm{~N}$
3 $3.0 \times 10^{3} \mathrm{~N}$
4 $3.5 \times 10^{3} \mathrm{~N}$
Work, Energy and Power

148742 If the engine of a train of mass $2.05 \times 10^{6} \mathrm{~kg}$ requires a duration of 7 minutes for changing its velocity from $5 \mathrm{~m} . \mathrm{s}^{-1}$ to $25 \mathrm{~m} . \mathrm{s}^{-1}$ find the power of the engine.

1 $1.46 \times 10^{6} \mathrm{~W}$
2 $2.05 \times 10^{6} \mathrm{~W}$
3 $5 \times 10^{-3} \mathrm{~W}$
4 $2.5 \times 10^{3} \mathrm{~W}$
Work, Energy and Power

148736 Arrange the four graphs in descending order of total work done; where $W_{1}, W_{2}, W_{3}$ and $W_{4}$ are the work done corresponding to figure $a, b, c$ and $d$ respectively.

1 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{1}>\mathrm{W}_{4}$
2 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{4}>\mathrm{W}_{1}$
3 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{4}>\mathrm{W}_{1}$
4 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{1}>\mathrm{W}_{4}$
Work, Energy and Power

148737 A block of mass $m=2 \mathrm{~kg}$ is pulled by a force $F$ $=40 \mathrm{~N}$ upwards through a height $\mathrm{h}=2 \mathrm{~m}$. The work done by its weight is.

1 $-40 \mathrm{~J}$
2 $60 \mathrm{~J}$
3 $80 \mathrm{~J}$
4 $-60 \mathrm{~J}$
Work, Energy and Power

148738 A ball of mass $1 \mathrm{~kg}$ moves in a straight line with velocity $v=\mathrm{cx}^{\alpha}$. where $\mathrm{c}=1$ (SI unit) and $\alpha$ is a constant. If the work done by the net force during its displacement from $x=0$ to $x=$ $4 \mathrm{~m}$ is 128 Joule, then the $\alpha$ is

1 1
2 $\frac{3}{2}$
3 2
4 $\frac{1}{2}$
Work, Energy and Power

148740 A stream of water flowing horizontally with a speed of $15 \mathrm{~ms}^{-1}$ gushes out of a tube of crosssectional area $10^{-2} \mathrm{~m}^{2}$ and hits a vertical wall nearby. The force exerted on the wall by the impact of water, assuming it does not rebound. is

1 $2.25 \times 10^{3} \mathrm{~N}$
2 $2.50 \times 10^{3} \mathrm{~N}$
3 $3.0 \times 10^{3} \mathrm{~N}$
4 $3.5 \times 10^{3} \mathrm{~N}$
Work, Energy and Power

148742 If the engine of a train of mass $2.05 \times 10^{6} \mathrm{~kg}$ requires a duration of 7 minutes for changing its velocity from $5 \mathrm{~m} . \mathrm{s}^{-1}$ to $25 \mathrm{~m} . \mathrm{s}^{-1}$ find the power of the engine.

1 $1.46 \times 10^{6} \mathrm{~W}$
2 $2.05 \times 10^{6} \mathrm{~W}$
3 $5 \times 10^{-3} \mathrm{~W}$
4 $2.5 \times 10^{3} \mathrm{~W}$
Work, Energy and Power

148736 Arrange the four graphs in descending order of total work done; where $W_{1}, W_{2}, W_{3}$ and $W_{4}$ are the work done corresponding to figure $a, b, c$ and $d$ respectively.

1 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{1}>\mathrm{W}_{4}$
2 $\mathrm{W}_{3}>\mathrm{W}_{2}>\mathrm{W}_{4}>\mathrm{W}_{1}$
3 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{4}>\mathrm{W}_{1}$
4 $\mathrm{W}_{2}>\mathrm{W}_{3}>\mathrm{W}_{1}>\mathrm{W}_{4}$
Work, Energy and Power

148737 A block of mass $m=2 \mathrm{~kg}$ is pulled by a force $F$ $=40 \mathrm{~N}$ upwards through a height $\mathrm{h}=2 \mathrm{~m}$. The work done by its weight is.

1 $-40 \mathrm{~J}$
2 $60 \mathrm{~J}$
3 $80 \mathrm{~J}$
4 $-60 \mathrm{~J}$
Work, Energy and Power

148738 A ball of mass $1 \mathrm{~kg}$ moves in a straight line with velocity $v=\mathrm{cx}^{\alpha}$. where $\mathrm{c}=1$ (SI unit) and $\alpha$ is a constant. If the work done by the net force during its displacement from $x=0$ to $x=$ $4 \mathrm{~m}$ is 128 Joule, then the $\alpha$ is

1 1
2 $\frac{3}{2}$
3 2
4 $\frac{1}{2}$
Work, Energy and Power

148740 A stream of water flowing horizontally with a speed of $15 \mathrm{~ms}^{-1}$ gushes out of a tube of crosssectional area $10^{-2} \mathrm{~m}^{2}$ and hits a vertical wall nearby. The force exerted on the wall by the impact of water, assuming it does not rebound. is

1 $2.25 \times 10^{3} \mathrm{~N}$
2 $2.50 \times 10^{3} \mathrm{~N}$
3 $3.0 \times 10^{3} \mathrm{~N}$
4 $3.5 \times 10^{3} \mathrm{~N}$
Work, Energy and Power

148742 If the engine of a train of mass $2.05 \times 10^{6} \mathrm{~kg}$ requires a duration of 7 minutes for changing its velocity from $5 \mathrm{~m} . \mathrm{s}^{-1}$ to $25 \mathrm{~m} . \mathrm{s}^{-1}$ find the power of the engine.

1 $1.46 \times 10^{6} \mathrm{~W}$
2 $2.05 \times 10^{6} \mathrm{~W}$
3 $5 \times 10^{-3} \mathrm{~W}$
4 $2.5 \times 10^{3} \mathrm{~W}$