03. Forces in Mechanism
Laws of Motion

146065 Three blocks \(A, B\) and \(C\) of masses \(4 \mathrm{~kg}, 2 \mathrm{~kg}\) and \(1 \mathrm{~kg}\) respectively, are in contact on a frictionless surface, as shown. If a force of \(14 \mathrm{~N}\) is applied on the \(4 \mathrm{~kg}\) block, then the contact force between \(A\) and \(B\) is

1 \(2 \mathrm{~N}\)
2 \(6 \mathrm{~N}\)
3 \(8 \mathrm{~N}\)
4 \(18 \mathrm{~N}\)
Laws of Motion

146066 A bullet of mass \(20 \mathrm{gm}\) is fired in horizontal direction with a velocity \(150 \mathrm{~m} / \mathrm{s}\) from a pistol of mass \(1 \mathrm{~kg}\). Recoil velocity of the pistol is

1 \(3 \mathrm{~m} / \mathrm{s}\)
2 \(3 \mathrm{~km} / \mathrm{s}\)
3 \(300 \mathrm{~m} / \mathrm{s}\)
4 \(1 / 3 \mathrm{~m} / \mathrm{s}\)
Laws of Motion

146067 A particle is moving uniformly in a circular path of radius \(r\). When it moves through an angular displacement \(\theta\), then the magnitude of the corresponding linear displacement will be

1 \(2 \mathrm{r} \cos \left(\frac{\theta}{2}\right)\)
2 \(2 r \cot \left(\frac{\theta}{2}\right)\)
3 \(2 \mathrm{r} \tan \left(\frac{\theta}{2}\right)\)
4 \(2 \mathrm{r} \sin \left(\frac{\theta}{2}\right)\)
Laws of Motion

146068 Three blocks of masses \(\mathrm{m}, 2 \mathrm{~m}\) and \(3 \mathrm{~m}\) are connected by massless strings as shown on a frictionless table. They are pulled with a force \(T_{3}=60 \mathrm{~N}\), the tension \(T_{1}\) will be

1 \(10 \mathrm{~N}\)
2 \(20 \mathrm{~N}\)
3 \(32 \mathrm{~N}\)
4 \(40 \mathrm{~N}\)
Laws of Motion

146065 Three blocks \(A, B\) and \(C\) of masses \(4 \mathrm{~kg}, 2 \mathrm{~kg}\) and \(1 \mathrm{~kg}\) respectively, are in contact on a frictionless surface, as shown. If a force of \(14 \mathrm{~N}\) is applied on the \(4 \mathrm{~kg}\) block, then the contact force between \(A\) and \(B\) is

1 \(2 \mathrm{~N}\)
2 \(6 \mathrm{~N}\)
3 \(8 \mathrm{~N}\)
4 \(18 \mathrm{~N}\)
Laws of Motion

146066 A bullet of mass \(20 \mathrm{gm}\) is fired in horizontal direction with a velocity \(150 \mathrm{~m} / \mathrm{s}\) from a pistol of mass \(1 \mathrm{~kg}\). Recoil velocity of the pistol is

1 \(3 \mathrm{~m} / \mathrm{s}\)
2 \(3 \mathrm{~km} / \mathrm{s}\)
3 \(300 \mathrm{~m} / \mathrm{s}\)
4 \(1 / 3 \mathrm{~m} / \mathrm{s}\)
Laws of Motion

146067 A particle is moving uniformly in a circular path of radius \(r\). When it moves through an angular displacement \(\theta\), then the magnitude of the corresponding linear displacement will be

1 \(2 \mathrm{r} \cos \left(\frac{\theta}{2}\right)\)
2 \(2 r \cot \left(\frac{\theta}{2}\right)\)
3 \(2 \mathrm{r} \tan \left(\frac{\theta}{2}\right)\)
4 \(2 \mathrm{r} \sin \left(\frac{\theta}{2}\right)\)
Laws of Motion

146068 Three blocks of masses \(\mathrm{m}, 2 \mathrm{~m}\) and \(3 \mathrm{~m}\) are connected by massless strings as shown on a frictionless table. They are pulled with a force \(T_{3}=60 \mathrm{~N}\), the tension \(T_{1}\) will be

1 \(10 \mathrm{~N}\)
2 \(20 \mathrm{~N}\)
3 \(32 \mathrm{~N}\)
4 \(40 \mathrm{~N}\)
Laws of Motion

146065 Three blocks \(A, B\) and \(C\) of masses \(4 \mathrm{~kg}, 2 \mathrm{~kg}\) and \(1 \mathrm{~kg}\) respectively, are in contact on a frictionless surface, as shown. If a force of \(14 \mathrm{~N}\) is applied on the \(4 \mathrm{~kg}\) block, then the contact force between \(A\) and \(B\) is

1 \(2 \mathrm{~N}\)
2 \(6 \mathrm{~N}\)
3 \(8 \mathrm{~N}\)
4 \(18 \mathrm{~N}\)
Laws of Motion

146066 A bullet of mass \(20 \mathrm{gm}\) is fired in horizontal direction with a velocity \(150 \mathrm{~m} / \mathrm{s}\) from a pistol of mass \(1 \mathrm{~kg}\). Recoil velocity of the pistol is

1 \(3 \mathrm{~m} / \mathrm{s}\)
2 \(3 \mathrm{~km} / \mathrm{s}\)
3 \(300 \mathrm{~m} / \mathrm{s}\)
4 \(1 / 3 \mathrm{~m} / \mathrm{s}\)
Laws of Motion

146067 A particle is moving uniformly in a circular path of radius \(r\). When it moves through an angular displacement \(\theta\), then the magnitude of the corresponding linear displacement will be

1 \(2 \mathrm{r} \cos \left(\frac{\theta}{2}\right)\)
2 \(2 r \cot \left(\frac{\theta}{2}\right)\)
3 \(2 \mathrm{r} \tan \left(\frac{\theta}{2}\right)\)
4 \(2 \mathrm{r} \sin \left(\frac{\theta}{2}\right)\)
Laws of Motion

146068 Three blocks of masses \(\mathrm{m}, 2 \mathrm{~m}\) and \(3 \mathrm{~m}\) are connected by massless strings as shown on a frictionless table. They are pulled with a force \(T_{3}=60 \mathrm{~N}\), the tension \(T_{1}\) will be

1 \(10 \mathrm{~N}\)
2 \(20 \mathrm{~N}\)
3 \(32 \mathrm{~N}\)
4 \(40 \mathrm{~N}\)
Laws of Motion

146065 Three blocks \(A, B\) and \(C\) of masses \(4 \mathrm{~kg}, 2 \mathrm{~kg}\) and \(1 \mathrm{~kg}\) respectively, are in contact on a frictionless surface, as shown. If a force of \(14 \mathrm{~N}\) is applied on the \(4 \mathrm{~kg}\) block, then the contact force between \(A\) and \(B\) is

1 \(2 \mathrm{~N}\)
2 \(6 \mathrm{~N}\)
3 \(8 \mathrm{~N}\)
4 \(18 \mathrm{~N}\)
Laws of Motion

146066 A bullet of mass \(20 \mathrm{gm}\) is fired in horizontal direction with a velocity \(150 \mathrm{~m} / \mathrm{s}\) from a pistol of mass \(1 \mathrm{~kg}\). Recoil velocity of the pistol is

1 \(3 \mathrm{~m} / \mathrm{s}\)
2 \(3 \mathrm{~km} / \mathrm{s}\)
3 \(300 \mathrm{~m} / \mathrm{s}\)
4 \(1 / 3 \mathrm{~m} / \mathrm{s}\)
Laws of Motion

146067 A particle is moving uniformly in a circular path of radius \(r\). When it moves through an angular displacement \(\theta\), then the magnitude of the corresponding linear displacement will be

1 \(2 \mathrm{r} \cos \left(\frac{\theta}{2}\right)\)
2 \(2 r \cot \left(\frac{\theta}{2}\right)\)
3 \(2 \mathrm{r} \tan \left(\frac{\theta}{2}\right)\)
4 \(2 \mathrm{r} \sin \left(\frac{\theta}{2}\right)\)
Laws of Motion

146068 Three blocks of masses \(\mathrm{m}, 2 \mathrm{~m}\) and \(3 \mathrm{~m}\) are connected by massless strings as shown on a frictionless table. They are pulled with a force \(T_{3}=60 \mathrm{~N}\), the tension \(T_{1}\) will be

1 \(10 \mathrm{~N}\)
2 \(20 \mathrm{~N}\)
3 \(32 \mathrm{~N}\)
4 \(40 \mathrm{~N}\)