00. Momentum, Force and Inertia
Laws of Motion

145791 A bullet of mass \(20 \mathrm{~g}\) moving with a velocity of \(200 \mathrm{~m} / \mathrm{s}\) strikes a target and is brought to rest in \(\left(\frac{1}{50}\right)^{\text {th }}\) of a second. The impulse and average
force of impact are respectively.

1 \(2 \mathrm{Ns}, 100 \mathrm{~N}\)
2 \(4 \mathrm{Ns}, 200 \mathrm{~N}\)
3 \(2 \mathrm{Ns}, 200 \mathrm{~N}\)
4 \(4 \mathrm{Ns}, 100 \mathrm{~N}\)
Laws of Motion

145792 Let a force \(\overrightarrow{\mathbf{F}}=-\mathbf{F k}\) acts on the origin of Cartesian frame of reference. The moment of force about a point \((1,-1)\) will be

1 \(F(\hat{i}-\hat{j})\)
2 \(F(\hat{i}+\hat{j})\)
3 \(-F(\hat{i}-\hat{j})\)
4 \(-F(\hat{i}+\hat{j})\)
Laws of Motion

145793 A body of mass \(2 \mathrm{~kg}\) is acted upon by two perpendicular forces \(4 \mathrm{~N}\) and \(3 \mathrm{~N}\). The magnitude and direction of the acceleration of the body respectively are.

1 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
2 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
3 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{4}{3}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
4 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
Laws of Motion

145794 The resultant force of \(5 \mathrm{~N}\) and \(10 \mathrm{~N}\) cannot be

1 \(12 \mathrm{~N}\)
2 \(4 \mathrm{~N}\)
3 \(8 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
Laws of Motion

145796 Find the apparent weight of a body of mass, 1.0 \(\mathrm{kg}\) falling with an acceleration of \(10 \mathrm{~ms}^{-2}\). \(\left(\mathrm{g} \approx \mathbf{1 0} \mathrm{ms}^{-2}\right)\)

1 \(1 \mathrm{~kg}\)-wt
2 \(2 \mathrm{~kg}-\mathrm{wt}\)
3 0
4 \(0.5 \mathrm{~kg}-\mathrm{wt}\)
Laws of Motion

145791 A bullet of mass \(20 \mathrm{~g}\) moving with a velocity of \(200 \mathrm{~m} / \mathrm{s}\) strikes a target and is brought to rest in \(\left(\frac{1}{50}\right)^{\text {th }}\) of a second. The impulse and average
force of impact are respectively.

1 \(2 \mathrm{Ns}, 100 \mathrm{~N}\)
2 \(4 \mathrm{Ns}, 200 \mathrm{~N}\)
3 \(2 \mathrm{Ns}, 200 \mathrm{~N}\)
4 \(4 \mathrm{Ns}, 100 \mathrm{~N}\)
Laws of Motion

145792 Let a force \(\overrightarrow{\mathbf{F}}=-\mathbf{F k}\) acts on the origin of Cartesian frame of reference. The moment of force about a point \((1,-1)\) will be

1 \(F(\hat{i}-\hat{j})\)
2 \(F(\hat{i}+\hat{j})\)
3 \(-F(\hat{i}-\hat{j})\)
4 \(-F(\hat{i}+\hat{j})\)
Laws of Motion

145793 A body of mass \(2 \mathrm{~kg}\) is acted upon by two perpendicular forces \(4 \mathrm{~N}\) and \(3 \mathrm{~N}\). The magnitude and direction of the acceleration of the body respectively are.

1 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
2 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
3 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{4}{3}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
4 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
Laws of Motion

145794 The resultant force of \(5 \mathrm{~N}\) and \(10 \mathrm{~N}\) cannot be

1 \(12 \mathrm{~N}\)
2 \(4 \mathrm{~N}\)
3 \(8 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
Laws of Motion

145796 Find the apparent weight of a body of mass, 1.0 \(\mathrm{kg}\) falling with an acceleration of \(10 \mathrm{~ms}^{-2}\). \(\left(\mathrm{g} \approx \mathbf{1 0} \mathrm{ms}^{-2}\right)\)

1 \(1 \mathrm{~kg}\)-wt
2 \(2 \mathrm{~kg}-\mathrm{wt}\)
3 0
4 \(0.5 \mathrm{~kg}-\mathrm{wt}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Laws of Motion

145791 A bullet of mass \(20 \mathrm{~g}\) moving with a velocity of \(200 \mathrm{~m} / \mathrm{s}\) strikes a target and is brought to rest in \(\left(\frac{1}{50}\right)^{\text {th }}\) of a second. The impulse and average
force of impact are respectively.

1 \(2 \mathrm{Ns}, 100 \mathrm{~N}\)
2 \(4 \mathrm{Ns}, 200 \mathrm{~N}\)
3 \(2 \mathrm{Ns}, 200 \mathrm{~N}\)
4 \(4 \mathrm{Ns}, 100 \mathrm{~N}\)
Laws of Motion

145792 Let a force \(\overrightarrow{\mathbf{F}}=-\mathbf{F k}\) acts on the origin of Cartesian frame of reference. The moment of force about a point \((1,-1)\) will be

1 \(F(\hat{i}-\hat{j})\)
2 \(F(\hat{i}+\hat{j})\)
3 \(-F(\hat{i}-\hat{j})\)
4 \(-F(\hat{i}+\hat{j})\)
Laws of Motion

145793 A body of mass \(2 \mathrm{~kg}\) is acted upon by two perpendicular forces \(4 \mathrm{~N}\) and \(3 \mathrm{~N}\). The magnitude and direction of the acceleration of the body respectively are.

1 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
2 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
3 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{4}{3}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
4 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
Laws of Motion

145794 The resultant force of \(5 \mathrm{~N}\) and \(10 \mathrm{~N}\) cannot be

1 \(12 \mathrm{~N}\)
2 \(4 \mathrm{~N}\)
3 \(8 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
Laws of Motion

145796 Find the apparent weight of a body of mass, 1.0 \(\mathrm{kg}\) falling with an acceleration of \(10 \mathrm{~ms}^{-2}\). \(\left(\mathrm{g} \approx \mathbf{1 0} \mathrm{ms}^{-2}\right)\)

1 \(1 \mathrm{~kg}\)-wt
2 \(2 \mathrm{~kg}-\mathrm{wt}\)
3 0
4 \(0.5 \mathrm{~kg}-\mathrm{wt}\)
Laws of Motion

145791 A bullet of mass \(20 \mathrm{~g}\) moving with a velocity of \(200 \mathrm{~m} / \mathrm{s}\) strikes a target and is brought to rest in \(\left(\frac{1}{50}\right)^{\text {th }}\) of a second. The impulse and average
force of impact are respectively.

1 \(2 \mathrm{Ns}, 100 \mathrm{~N}\)
2 \(4 \mathrm{Ns}, 200 \mathrm{~N}\)
3 \(2 \mathrm{Ns}, 200 \mathrm{~N}\)
4 \(4 \mathrm{Ns}, 100 \mathrm{~N}\)
Laws of Motion

145792 Let a force \(\overrightarrow{\mathbf{F}}=-\mathbf{F k}\) acts on the origin of Cartesian frame of reference. The moment of force about a point \((1,-1)\) will be

1 \(F(\hat{i}-\hat{j})\)
2 \(F(\hat{i}+\hat{j})\)
3 \(-F(\hat{i}-\hat{j})\)
4 \(-F(\hat{i}+\hat{j})\)
Laws of Motion

145793 A body of mass \(2 \mathrm{~kg}\) is acted upon by two perpendicular forces \(4 \mathrm{~N}\) and \(3 \mathrm{~N}\). The magnitude and direction of the acceleration of the body respectively are.

1 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
2 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
3 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{4}{3}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
4 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
Laws of Motion

145794 The resultant force of \(5 \mathrm{~N}\) and \(10 \mathrm{~N}\) cannot be

1 \(12 \mathrm{~N}\)
2 \(4 \mathrm{~N}\)
3 \(8 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
Laws of Motion

145796 Find the apparent weight of a body of mass, 1.0 \(\mathrm{kg}\) falling with an acceleration of \(10 \mathrm{~ms}^{-2}\). \(\left(\mathrm{g} \approx \mathbf{1 0} \mathrm{ms}^{-2}\right)\)

1 \(1 \mathrm{~kg}\)-wt
2 \(2 \mathrm{~kg}-\mathrm{wt}\)
3 0
4 \(0.5 \mathrm{~kg}-\mathrm{wt}\)
Laws of Motion

145791 A bullet of mass \(20 \mathrm{~g}\) moving with a velocity of \(200 \mathrm{~m} / \mathrm{s}\) strikes a target and is brought to rest in \(\left(\frac{1}{50}\right)^{\text {th }}\) of a second. The impulse and average
force of impact are respectively.

1 \(2 \mathrm{Ns}, 100 \mathrm{~N}\)
2 \(4 \mathrm{Ns}, 200 \mathrm{~N}\)
3 \(2 \mathrm{Ns}, 200 \mathrm{~N}\)
4 \(4 \mathrm{Ns}, 100 \mathrm{~N}\)
Laws of Motion

145792 Let a force \(\overrightarrow{\mathbf{F}}=-\mathbf{F k}\) acts on the origin of Cartesian frame of reference. The moment of force about a point \((1,-1)\) will be

1 \(F(\hat{i}-\hat{j})\)
2 \(F(\hat{i}+\hat{j})\)
3 \(-F(\hat{i}-\hat{j})\)
4 \(-F(\hat{i}+\hat{j})\)
Laws of Motion

145793 A body of mass \(2 \mathrm{~kg}\) is acted upon by two perpendicular forces \(4 \mathrm{~N}\) and \(3 \mathrm{~N}\). The magnitude and direction of the acceleration of the body respectively are.

1 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
2 \(2.5 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
3 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{4}{3}\right)\) with respect to the direction of \(4 \mathrm{~N}\) force
4 \(2.0 \mathrm{~m} / \mathrm{s}^{2} \cdot \operatorname{Tan}^{-1}\left(\frac{3}{4}\right)\) with respect to the direction of \(3 \mathrm{~N}\) force
Laws of Motion

145794 The resultant force of \(5 \mathrm{~N}\) and \(10 \mathrm{~N}\) cannot be

1 \(12 \mathrm{~N}\)
2 \(4 \mathrm{~N}\)
3 \(8 \mathrm{~N}\)
4 \(5 \mathrm{~N}\)
Laws of Motion

145796 Find the apparent weight of a body of mass, 1.0 \(\mathrm{kg}\) falling with an acceleration of \(10 \mathrm{~ms}^{-2}\). \(\left(\mathrm{g} \approx \mathbf{1 0} \mathrm{ms}^{-2}\right)\)

1 \(1 \mathrm{~kg}\)-wt
2 \(2 \mathrm{~kg}-\mathrm{wt}\)
3 0
4 \(0.5 \mathrm{~kg}-\mathrm{wt}\)