00. Momentum, Force and Inertia
Laws of Motion

145814 The rate of mass of the gas emitted from rear of a rocket is initially \(0.1 \mathrm{~kg} / \mathrm{sec}\). If the speed of the gas relative to the rocket is \(50 \mathrm{~m} / \mathrm{sec}\) and mass of the rocket is \(\mathbf{2} \mathbf{~ k g}\), then the acceleration of the rocket in \(\mathrm{m} / \mathrm{sec}^{2}\) is

1 5
2 5.2
3 2.5
4 25
Laws of Motion

145815 A gun fires \(\mathbf{N}\) bullets per second, each of mass \(m\) with velocity \(v\). The force exerted by the bullets on the gun is

1 \(\mathrm{vNm}\)
2 \(\frac{\mathrm{mv}}{\mathrm{N}}\)
3 \(\mathrm{mvN}^{2}\)
4 \(\frac{m v^{2}}{\mathrm{~N}}\)
Laws of Motion

145816 A body of mass \(10 \mathrm{~kg}\) is acted by two forces each of magnitude \(10 \mathrm{~N}\) making an angle of \(60^{\circ}\) with each other. Find the net acceleration of the body is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
2 \(\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
3 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
4 \(4 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
Laws of Motion

145822 A \(10 \mathrm{~N}\) force is applied on a body produces an acceleration of \(1 \mathrm{~m} / \mathrm{s}^{2}\). The mass of the body is

1 \(5 \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(15 \mathrm{~kg}\)
4 \(20 \mathrm{~kg}\)
Laws of Motion

145823 A body, under the action of a force \(F=6 \hat{i}-8 \hat{j}+10 \hat{k}\), acquires an acceleration of 1 \(\mathrm{ms}^{-2}\). The mass of this body must be

1 \(2 \sqrt{10} \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(20 \mathrm{~kg}\)
4 \(10 \sqrt{2} \mathrm{~kg}\)
Laws of Motion

145814 The rate of mass of the gas emitted from rear of a rocket is initially \(0.1 \mathrm{~kg} / \mathrm{sec}\). If the speed of the gas relative to the rocket is \(50 \mathrm{~m} / \mathrm{sec}\) and mass of the rocket is \(\mathbf{2} \mathbf{~ k g}\), then the acceleration of the rocket in \(\mathrm{m} / \mathrm{sec}^{2}\) is

1 5
2 5.2
3 2.5
4 25
Laws of Motion

145815 A gun fires \(\mathbf{N}\) bullets per second, each of mass \(m\) with velocity \(v\). The force exerted by the bullets on the gun is

1 \(\mathrm{vNm}\)
2 \(\frac{\mathrm{mv}}{\mathrm{N}}\)
3 \(\mathrm{mvN}^{2}\)
4 \(\frac{m v^{2}}{\mathrm{~N}}\)
Laws of Motion

145816 A body of mass \(10 \mathrm{~kg}\) is acted by two forces each of magnitude \(10 \mathrm{~N}\) making an angle of \(60^{\circ}\) with each other. Find the net acceleration of the body is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
2 \(\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
3 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
4 \(4 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
Laws of Motion

145822 A \(10 \mathrm{~N}\) force is applied on a body produces an acceleration of \(1 \mathrm{~m} / \mathrm{s}^{2}\). The mass of the body is

1 \(5 \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(15 \mathrm{~kg}\)
4 \(20 \mathrm{~kg}\)
Laws of Motion

145823 A body, under the action of a force \(F=6 \hat{i}-8 \hat{j}+10 \hat{k}\), acquires an acceleration of 1 \(\mathrm{ms}^{-2}\). The mass of this body must be

1 \(2 \sqrt{10} \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(20 \mathrm{~kg}\)
4 \(10 \sqrt{2} \mathrm{~kg}\)
Laws of Motion

145814 The rate of mass of the gas emitted from rear of a rocket is initially \(0.1 \mathrm{~kg} / \mathrm{sec}\). If the speed of the gas relative to the rocket is \(50 \mathrm{~m} / \mathrm{sec}\) and mass of the rocket is \(\mathbf{2} \mathbf{~ k g}\), then the acceleration of the rocket in \(\mathrm{m} / \mathrm{sec}^{2}\) is

1 5
2 5.2
3 2.5
4 25
Laws of Motion

145815 A gun fires \(\mathbf{N}\) bullets per second, each of mass \(m\) with velocity \(v\). The force exerted by the bullets on the gun is

1 \(\mathrm{vNm}\)
2 \(\frac{\mathrm{mv}}{\mathrm{N}}\)
3 \(\mathrm{mvN}^{2}\)
4 \(\frac{m v^{2}}{\mathrm{~N}}\)
Laws of Motion

145816 A body of mass \(10 \mathrm{~kg}\) is acted by two forces each of magnitude \(10 \mathrm{~N}\) making an angle of \(60^{\circ}\) with each other. Find the net acceleration of the body is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
2 \(\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
3 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
4 \(4 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
Laws of Motion

145822 A \(10 \mathrm{~N}\) force is applied on a body produces an acceleration of \(1 \mathrm{~m} / \mathrm{s}^{2}\). The mass of the body is

1 \(5 \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(15 \mathrm{~kg}\)
4 \(20 \mathrm{~kg}\)
Laws of Motion

145823 A body, under the action of a force \(F=6 \hat{i}-8 \hat{j}+10 \hat{k}\), acquires an acceleration of 1 \(\mathrm{ms}^{-2}\). The mass of this body must be

1 \(2 \sqrt{10} \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(20 \mathrm{~kg}\)
4 \(10 \sqrt{2} \mathrm{~kg}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Laws of Motion

145814 The rate of mass of the gas emitted from rear of a rocket is initially \(0.1 \mathrm{~kg} / \mathrm{sec}\). If the speed of the gas relative to the rocket is \(50 \mathrm{~m} / \mathrm{sec}\) and mass of the rocket is \(\mathbf{2} \mathbf{~ k g}\), then the acceleration of the rocket in \(\mathrm{m} / \mathrm{sec}^{2}\) is

1 5
2 5.2
3 2.5
4 25
Laws of Motion

145815 A gun fires \(\mathbf{N}\) bullets per second, each of mass \(m\) with velocity \(v\). The force exerted by the bullets on the gun is

1 \(\mathrm{vNm}\)
2 \(\frac{\mathrm{mv}}{\mathrm{N}}\)
3 \(\mathrm{mvN}^{2}\)
4 \(\frac{m v^{2}}{\mathrm{~N}}\)
Laws of Motion

145816 A body of mass \(10 \mathrm{~kg}\) is acted by two forces each of magnitude \(10 \mathrm{~N}\) making an angle of \(60^{\circ}\) with each other. Find the net acceleration of the body is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
2 \(\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
3 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
4 \(4 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
Laws of Motion

145822 A \(10 \mathrm{~N}\) force is applied on a body produces an acceleration of \(1 \mathrm{~m} / \mathrm{s}^{2}\). The mass of the body is

1 \(5 \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(15 \mathrm{~kg}\)
4 \(20 \mathrm{~kg}\)
Laws of Motion

145823 A body, under the action of a force \(F=6 \hat{i}-8 \hat{j}+10 \hat{k}\), acquires an acceleration of 1 \(\mathrm{ms}^{-2}\). The mass of this body must be

1 \(2 \sqrt{10} \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(20 \mathrm{~kg}\)
4 \(10 \sqrt{2} \mathrm{~kg}\)
Laws of Motion

145814 The rate of mass of the gas emitted from rear of a rocket is initially \(0.1 \mathrm{~kg} / \mathrm{sec}\). If the speed of the gas relative to the rocket is \(50 \mathrm{~m} / \mathrm{sec}\) and mass of the rocket is \(\mathbf{2} \mathbf{~ k g}\), then the acceleration of the rocket in \(\mathrm{m} / \mathrm{sec}^{2}\) is

1 5
2 5.2
3 2.5
4 25
Laws of Motion

145815 A gun fires \(\mathbf{N}\) bullets per second, each of mass \(m\) with velocity \(v\). The force exerted by the bullets on the gun is

1 \(\mathrm{vNm}\)
2 \(\frac{\mathrm{mv}}{\mathrm{N}}\)
3 \(\mathrm{mvN}^{2}\)
4 \(\frac{m v^{2}}{\mathrm{~N}}\)
Laws of Motion

145816 A body of mass \(10 \mathrm{~kg}\) is acted by two forces each of magnitude \(10 \mathrm{~N}\) making an angle of \(60^{\circ}\) with each other. Find the net acceleration of the body is

1 \(2 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
2 \(\sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
3 \(3 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
4 \(4 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}\)
Laws of Motion

145822 A \(10 \mathrm{~N}\) force is applied on a body produces an acceleration of \(1 \mathrm{~m} / \mathrm{s}^{2}\). The mass of the body is

1 \(5 \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(15 \mathrm{~kg}\)
4 \(20 \mathrm{~kg}\)
Laws of Motion

145823 A body, under the action of a force \(F=6 \hat{i}-8 \hat{j}+10 \hat{k}\), acquires an acceleration of 1 \(\mathrm{ms}^{-2}\). The mass of this body must be

1 \(2 \sqrt{10} \mathrm{~kg}\)
2 \(10 \mathrm{~kg}\)
3 \(20 \mathrm{~kg}\)
4 \(10 \sqrt{2} \mathrm{~kg}\)