00. Momentum, Force and Inertia
Laws of Motion

145809 The linear momentum \(p\) of a body varies with times as \(p=\alpha+\beta t^{2}\) where \(\alpha\) and \(\beta\) are constants. The net force action on the body for one dimensional motion varies as

1 \(t^{2}\)
2 \(\mathrm{t}^{-1}\)
3 \(\mathrm{t}^{-2}\)
4 \(\mathrm{t}\)
Laws of Motion

145810 The \(X\) and \(Y\) components of a force \(F\) acting at \(30^{\circ}\) to \(\mathrm{x}\)-axis are respectively:

1 \(\mathrm{F}, \frac{\mathrm{F}}{\sqrt{2}}\)
2 \(\frac{\mathrm{F}}{\sqrt{2}}, \mathrm{~F}\)
3 \(\frac{\mathrm{F}}{2}, \frac{\sqrt{3}}{2} \mathrm{~F}\)
4 \(\frac{\sqrt{3}}{2} \mathrm{~F}, \frac{1}{2} \mathrm{~F}\)
Laws of Motion

145811 A batsman hits back a ball straight in the direction of the bowler without changing its initial speed of \(12 \mathrm{~m} / \mathrm{s}\). If the mass of the ball is \(0.15 \mathrm{~kg}\) the impulse imparted to the ball is

1 \(36 \mathrm{~N} \mathrm{~s}\)
2 \(3.6 \mathrm{~N} \mathrm{~s}\)
3 \(0.36 \mathrm{~N} \mathrm{~s}\)
4 \(0.036 \mathrm{~N} \mathrm{~s}\)
Laws of Motion

145813 A cricket ball of mass \(0.5 \mathrm{~kg}\) strikes a cricket bat normally with a velocity of \(20 \mathrm{~m} \mathrm{~s}^{-1}\) and rebounds with a velocity of \(10 \mathrm{~m} \mathrm{~s}^{-1}\). The impulse of the force exerted by the ball on the bat is

1 \(15 \mathrm{~N} \mathrm{~s}\)
2 \(25 \mathrm{~N} \mathrm{~s}\)
3 \(30 \mathrm{~N} \mathrm{~s}\)
4 \(10 \mathrm{~N} \mathrm{~s}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Laws of Motion

145809 The linear momentum \(p\) of a body varies with times as \(p=\alpha+\beta t^{2}\) where \(\alpha\) and \(\beta\) are constants. The net force action on the body for one dimensional motion varies as

1 \(t^{2}\)
2 \(\mathrm{t}^{-1}\)
3 \(\mathrm{t}^{-2}\)
4 \(\mathrm{t}\)
Laws of Motion

145810 The \(X\) and \(Y\) components of a force \(F\) acting at \(30^{\circ}\) to \(\mathrm{x}\)-axis are respectively:

1 \(\mathrm{F}, \frac{\mathrm{F}}{\sqrt{2}}\)
2 \(\frac{\mathrm{F}}{\sqrt{2}}, \mathrm{~F}\)
3 \(\frac{\mathrm{F}}{2}, \frac{\sqrt{3}}{2} \mathrm{~F}\)
4 \(\frac{\sqrt{3}}{2} \mathrm{~F}, \frac{1}{2} \mathrm{~F}\)
Laws of Motion

145811 A batsman hits back a ball straight in the direction of the bowler without changing its initial speed of \(12 \mathrm{~m} / \mathrm{s}\). If the mass of the ball is \(0.15 \mathrm{~kg}\) the impulse imparted to the ball is

1 \(36 \mathrm{~N} \mathrm{~s}\)
2 \(3.6 \mathrm{~N} \mathrm{~s}\)
3 \(0.36 \mathrm{~N} \mathrm{~s}\)
4 \(0.036 \mathrm{~N} \mathrm{~s}\)
Laws of Motion

145813 A cricket ball of mass \(0.5 \mathrm{~kg}\) strikes a cricket bat normally with a velocity of \(20 \mathrm{~m} \mathrm{~s}^{-1}\) and rebounds with a velocity of \(10 \mathrm{~m} \mathrm{~s}^{-1}\). The impulse of the force exerted by the ball on the bat is

1 \(15 \mathrm{~N} \mathrm{~s}\)
2 \(25 \mathrm{~N} \mathrm{~s}\)
3 \(30 \mathrm{~N} \mathrm{~s}\)
4 \(10 \mathrm{~N} \mathrm{~s}\)
Laws of Motion

145809 The linear momentum \(p\) of a body varies with times as \(p=\alpha+\beta t^{2}\) where \(\alpha\) and \(\beta\) are constants. The net force action on the body for one dimensional motion varies as

1 \(t^{2}\)
2 \(\mathrm{t}^{-1}\)
3 \(\mathrm{t}^{-2}\)
4 \(\mathrm{t}\)
Laws of Motion

145810 The \(X\) and \(Y\) components of a force \(F\) acting at \(30^{\circ}\) to \(\mathrm{x}\)-axis are respectively:

1 \(\mathrm{F}, \frac{\mathrm{F}}{\sqrt{2}}\)
2 \(\frac{\mathrm{F}}{\sqrt{2}}, \mathrm{~F}\)
3 \(\frac{\mathrm{F}}{2}, \frac{\sqrt{3}}{2} \mathrm{~F}\)
4 \(\frac{\sqrt{3}}{2} \mathrm{~F}, \frac{1}{2} \mathrm{~F}\)
Laws of Motion

145811 A batsman hits back a ball straight in the direction of the bowler without changing its initial speed of \(12 \mathrm{~m} / \mathrm{s}\). If the mass of the ball is \(0.15 \mathrm{~kg}\) the impulse imparted to the ball is

1 \(36 \mathrm{~N} \mathrm{~s}\)
2 \(3.6 \mathrm{~N} \mathrm{~s}\)
3 \(0.36 \mathrm{~N} \mathrm{~s}\)
4 \(0.036 \mathrm{~N} \mathrm{~s}\)
Laws of Motion

145813 A cricket ball of mass \(0.5 \mathrm{~kg}\) strikes a cricket bat normally with a velocity of \(20 \mathrm{~m} \mathrm{~s}^{-1}\) and rebounds with a velocity of \(10 \mathrm{~m} \mathrm{~s}^{-1}\). The impulse of the force exerted by the ball on the bat is

1 \(15 \mathrm{~N} \mathrm{~s}\)
2 \(25 \mathrm{~N} \mathrm{~s}\)
3 \(30 \mathrm{~N} \mathrm{~s}\)
4 \(10 \mathrm{~N} \mathrm{~s}\)
Laws of Motion

145809 The linear momentum \(p\) of a body varies with times as \(p=\alpha+\beta t^{2}\) where \(\alpha\) and \(\beta\) are constants. The net force action on the body for one dimensional motion varies as

1 \(t^{2}\)
2 \(\mathrm{t}^{-1}\)
3 \(\mathrm{t}^{-2}\)
4 \(\mathrm{t}\)
Laws of Motion

145810 The \(X\) and \(Y\) components of a force \(F\) acting at \(30^{\circ}\) to \(\mathrm{x}\)-axis are respectively:

1 \(\mathrm{F}, \frac{\mathrm{F}}{\sqrt{2}}\)
2 \(\frac{\mathrm{F}}{\sqrt{2}}, \mathrm{~F}\)
3 \(\frac{\mathrm{F}}{2}, \frac{\sqrt{3}}{2} \mathrm{~F}\)
4 \(\frac{\sqrt{3}}{2} \mathrm{~F}, \frac{1}{2} \mathrm{~F}\)
Laws of Motion

145811 A batsman hits back a ball straight in the direction of the bowler without changing its initial speed of \(12 \mathrm{~m} / \mathrm{s}\). If the mass of the ball is \(0.15 \mathrm{~kg}\) the impulse imparted to the ball is

1 \(36 \mathrm{~N} \mathrm{~s}\)
2 \(3.6 \mathrm{~N} \mathrm{~s}\)
3 \(0.36 \mathrm{~N} \mathrm{~s}\)
4 \(0.036 \mathrm{~N} \mathrm{~s}\)
Laws of Motion

145813 A cricket ball of mass \(0.5 \mathrm{~kg}\) strikes a cricket bat normally with a velocity of \(20 \mathrm{~m} \mathrm{~s}^{-1}\) and rebounds with a velocity of \(10 \mathrm{~m} \mathrm{~s}^{-1}\). The impulse of the force exerted by the ball on the bat is

1 \(15 \mathrm{~N} \mathrm{~s}\)
2 \(25 \mathrm{~N} \mathrm{~s}\)
3 \(30 \mathrm{~N} \mathrm{~s}\)
4 \(10 \mathrm{~N} \mathrm{~s}\)