03. Projectile Motion
Motion in Plane

143773 A body is projected with an angle \(\theta\). The maximum height reached is \(h\). If the time of flight is \(4 \mathrm{sec}\) and \(g=10 \mathrm{~m} / \mathrm{s}^{2}\), then the value of \(h\) is

1 \(10 \mathrm{~m}\)
2 \(40 \mathrm{~m}\)
3 \(20 \mathrm{~m}\)
4 \(5 \mathrm{~m}\)
Motion in Plane

143775 An object is thrown towards the tower which is at a horizontal distance of \(50 \mathrm{~m}\) with an initial velocity of \(10 \mathrm{~ms}^{-1}\) and making an angle \(30^{\circ}\) with the horizontal. The object hits the tower at certain height. The height from the bottom of the tower where the object hits the tower is \((\mathrm{g}=\) \(10 \mathrm{~ms}^{-2}\) )

1 \(\frac{50}{\sqrt{3}}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
2 \(\frac{50}{3}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
3 \(\frac{100}{\sqrt{3}}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
4 \(\frac{100}{3}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
Motion in Plane

143776 Equations of motion of a projectile are given by \(x=36 t \mathrm{~m}\) and \(2 y=96 t-9.8 t^{2} m\). the angle of projection is equal to.

1 \(\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{3}\right)\)
3 \(\sin ^{-1}\left(\frac{4}{5}\right)\)
4 \(\sin ^{-1}\left(\frac{3}{5}\right)\)
Motion in Plane

143778 The maximum height reached by a projectile is \(4 \mathrm{~m}\). The horizontal range is \(12 \mathrm{~m}\). Velocity of projection in \(\mathrm{ms}^{-1}\) is: \((\mathrm{g}=\) acceleration due to gravity)

1 \(5 \sqrt{\frac{g}{2}}\)
2 \(3 \frac{g}{\sqrt{2}}\)
3 \(\frac{1}{3} \frac{g}{\sqrt{2}}\)
4 \(\frac{1}{5} \sqrt{\frac{g}{2}}\)
Motion in Plane

143773 A body is projected with an angle \(\theta\). The maximum height reached is \(h\). If the time of flight is \(4 \mathrm{sec}\) and \(g=10 \mathrm{~m} / \mathrm{s}^{2}\), then the value of \(h\) is

1 \(10 \mathrm{~m}\)
2 \(40 \mathrm{~m}\)
3 \(20 \mathrm{~m}\)
4 \(5 \mathrm{~m}\)
Motion in Plane

143775 An object is thrown towards the tower which is at a horizontal distance of \(50 \mathrm{~m}\) with an initial velocity of \(10 \mathrm{~ms}^{-1}\) and making an angle \(30^{\circ}\) with the horizontal. The object hits the tower at certain height. The height from the bottom of the tower where the object hits the tower is \((\mathrm{g}=\) \(10 \mathrm{~ms}^{-2}\) )

1 \(\frac{50}{\sqrt{3}}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
2 \(\frac{50}{3}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
3 \(\frac{100}{\sqrt{3}}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
4 \(\frac{100}{3}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
Motion in Plane

143776 Equations of motion of a projectile are given by \(x=36 t \mathrm{~m}\) and \(2 y=96 t-9.8 t^{2} m\). the angle of projection is equal to.

1 \(\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{3}\right)\)
3 \(\sin ^{-1}\left(\frac{4}{5}\right)\)
4 \(\sin ^{-1}\left(\frac{3}{5}\right)\)
Motion in Plane

143778 The maximum height reached by a projectile is \(4 \mathrm{~m}\). The horizontal range is \(12 \mathrm{~m}\). Velocity of projection in \(\mathrm{ms}^{-1}\) is: \((\mathrm{g}=\) acceleration due to gravity)

1 \(5 \sqrt{\frac{g}{2}}\)
2 \(3 \frac{g}{\sqrt{2}}\)
3 \(\frac{1}{3} \frac{g}{\sqrt{2}}\)
4 \(\frac{1}{5} \sqrt{\frac{g}{2}}\)
Motion in Plane

143773 A body is projected with an angle \(\theta\). The maximum height reached is \(h\). If the time of flight is \(4 \mathrm{sec}\) and \(g=10 \mathrm{~m} / \mathrm{s}^{2}\), then the value of \(h\) is

1 \(10 \mathrm{~m}\)
2 \(40 \mathrm{~m}\)
3 \(20 \mathrm{~m}\)
4 \(5 \mathrm{~m}\)
Motion in Plane

143775 An object is thrown towards the tower which is at a horizontal distance of \(50 \mathrm{~m}\) with an initial velocity of \(10 \mathrm{~ms}^{-1}\) and making an angle \(30^{\circ}\) with the horizontal. The object hits the tower at certain height. The height from the bottom of the tower where the object hits the tower is \((\mathrm{g}=\) \(10 \mathrm{~ms}^{-2}\) )

1 \(\frac{50}{\sqrt{3}}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
2 \(\frac{50}{3}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
3 \(\frac{100}{\sqrt{3}}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
4 \(\frac{100}{3}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
Motion in Plane

143776 Equations of motion of a projectile are given by \(x=36 t \mathrm{~m}\) and \(2 y=96 t-9.8 t^{2} m\). the angle of projection is equal to.

1 \(\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{3}\right)\)
3 \(\sin ^{-1}\left(\frac{4}{5}\right)\)
4 \(\sin ^{-1}\left(\frac{3}{5}\right)\)
Motion in Plane

143778 The maximum height reached by a projectile is \(4 \mathrm{~m}\). The horizontal range is \(12 \mathrm{~m}\). Velocity of projection in \(\mathrm{ms}^{-1}\) is: \((\mathrm{g}=\) acceleration due to gravity)

1 \(5 \sqrt{\frac{g}{2}}\)
2 \(3 \frac{g}{\sqrt{2}}\)
3 \(\frac{1}{3} \frac{g}{\sqrt{2}}\)
4 \(\frac{1}{5} \sqrt{\frac{g}{2}}\)
Motion in Plane

143773 A body is projected with an angle \(\theta\). The maximum height reached is \(h\). If the time of flight is \(4 \mathrm{sec}\) and \(g=10 \mathrm{~m} / \mathrm{s}^{2}\), then the value of \(h\) is

1 \(10 \mathrm{~m}\)
2 \(40 \mathrm{~m}\)
3 \(20 \mathrm{~m}\)
4 \(5 \mathrm{~m}\)
Motion in Plane

143775 An object is thrown towards the tower which is at a horizontal distance of \(50 \mathrm{~m}\) with an initial velocity of \(10 \mathrm{~ms}^{-1}\) and making an angle \(30^{\circ}\) with the horizontal. The object hits the tower at certain height. The height from the bottom of the tower where the object hits the tower is \((\mathrm{g}=\) \(10 \mathrm{~ms}^{-2}\) )

1 \(\frac{50}{\sqrt{3}}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
2 \(\frac{50}{3}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
3 \(\frac{100}{\sqrt{3}}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
4 \(\frac{100}{3}\left[1-\frac{10}{\sqrt{3}}\right] \mathrm{m}\)
Motion in Plane

143776 Equations of motion of a projectile are given by \(x=36 t \mathrm{~m}\) and \(2 y=96 t-9.8 t^{2} m\). the angle of projection is equal to.

1 \(\sin ^{-1}\left(\frac{3}{4}\right)\)
2 \(\sin ^{-1}\left(\frac{4}{3}\right)\)
3 \(\sin ^{-1}\left(\frac{4}{5}\right)\)
4 \(\sin ^{-1}\left(\frac{3}{5}\right)\)
Motion in Plane

143778 The maximum height reached by a projectile is \(4 \mathrm{~m}\). The horizontal range is \(12 \mathrm{~m}\). Velocity of projection in \(\mathrm{ms}^{-1}\) is: \((\mathrm{g}=\) acceleration due to gravity)

1 \(5 \sqrt{\frac{g}{2}}\)
2 \(3 \frac{g}{\sqrt{2}}\)
3 \(\frac{1}{3} \frac{g}{\sqrt{2}}\)
4 \(\frac{1}{5} \sqrt{\frac{g}{2}}\)