00. Scalar and Vector Quantities
Motion in Plane

143544 Three forces \(F_{1}, F_{2}\) and \(F_{3}\) together keep a body in equilibrium. If \(F_{1}=3 \mathrm{~N}\) along the positive \(x\) axis, \(F_{2}=4 \mathrm{~N}\) along the positive \(y\)-axis, then the third force \(F_{3}\) is

1 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
2 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
3 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
4 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
Motion in Plane

143545 Magnitudes of four pairs of displacement vectors are given. Which pair of displacement vectors, under vector addition, fails to give a resultant vector of magnitude \(3 \mathrm{~cm}\) ?

1 \(2 \mathrm{~cm}, 7 \mathrm{~cm}\)
2 \(1 \mathrm{~cm}, 4 \mathrm{~cm}\)
3 \(2 \mathrm{~cm}, 3 \mathrm{~cm}\)
4 \(2 \mathrm{~cm}, 4 \mathrm{~cm}\)
Motion in Plane

143546 A body is under the action of two mutually perpendicular forces of \(3 \mathrm{~N}\) and \(4 \mathrm{~N}\). The resultant force acting on the body is

1 \(7 \mathrm{~N}\)
2 \(1 \mathrm{~N}\)
3 \(5 \mathrm{~N}\)
4 zero
Motion in Plane

143549 Two vectors are given by \(\vec{A}=3 \hat{i}+\hat{j}+3 \hat{k}\) and \(\vec{B}=3 \hat{i}+5 \hat{j}-2 \hat{k}\). Find the third vector \(\vec{C}\) if \(\overrightarrow{\mathbf{A}}+3 \overrightarrow{\mathrm{B}}-\overrightarrow{\mathbf{C}}=\mathbf{0}\)

1 \(12 \hat{i}+14 \hat{j}+12 \hat{k}\)
2 \(13 \hat{i}+17 \hat{j}+12 \hat{k}\)
3 \(12 \hat{i}+16 \hat{j}-3 \hat{k}\)
4 \(15 \hat{i}+13 \hat{j}+4 \hat{k}\)
Motion in Plane

143550 Vector which is perpendicular to a
\((\mathbf{a} \cos \theta \hat{\mathbf{i}}+\mathbf{b} \sin \theta \hat{\mathbf{j}}) \text { is }\)

1 \(b \sin \theta \hat{\mathrm{i}}-a \cos \theta \hat{\mathrm{j}}\)
2 \(\frac{1}{\mathrm{a}} \sin \theta \hat{\mathrm{i}}-\frac{1}{\mathrm{~b}} \cos \theta \hat{\mathrm{j}}\)
3 \(5 \hat{\mathrm{k}}\)
4 all of these
Motion in Plane

143544 Three forces \(F_{1}, F_{2}\) and \(F_{3}\) together keep a body in equilibrium. If \(F_{1}=3 \mathrm{~N}\) along the positive \(x\) axis, \(F_{2}=4 \mathrm{~N}\) along the positive \(y\)-axis, then the third force \(F_{3}\) is

1 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
2 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
3 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
4 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
Motion in Plane

143545 Magnitudes of four pairs of displacement vectors are given. Which pair of displacement vectors, under vector addition, fails to give a resultant vector of magnitude \(3 \mathrm{~cm}\) ?

1 \(2 \mathrm{~cm}, 7 \mathrm{~cm}\)
2 \(1 \mathrm{~cm}, 4 \mathrm{~cm}\)
3 \(2 \mathrm{~cm}, 3 \mathrm{~cm}\)
4 \(2 \mathrm{~cm}, 4 \mathrm{~cm}\)
Motion in Plane

143546 A body is under the action of two mutually perpendicular forces of \(3 \mathrm{~N}\) and \(4 \mathrm{~N}\). The resultant force acting on the body is

1 \(7 \mathrm{~N}\)
2 \(1 \mathrm{~N}\)
3 \(5 \mathrm{~N}\)
4 zero
Motion in Plane

143549 Two vectors are given by \(\vec{A}=3 \hat{i}+\hat{j}+3 \hat{k}\) and \(\vec{B}=3 \hat{i}+5 \hat{j}-2 \hat{k}\). Find the third vector \(\vec{C}\) if \(\overrightarrow{\mathbf{A}}+3 \overrightarrow{\mathrm{B}}-\overrightarrow{\mathbf{C}}=\mathbf{0}\)

1 \(12 \hat{i}+14 \hat{j}+12 \hat{k}\)
2 \(13 \hat{i}+17 \hat{j}+12 \hat{k}\)
3 \(12 \hat{i}+16 \hat{j}-3 \hat{k}\)
4 \(15 \hat{i}+13 \hat{j}+4 \hat{k}\)
Motion in Plane

143550 Vector which is perpendicular to a
\((\mathbf{a} \cos \theta \hat{\mathbf{i}}+\mathbf{b} \sin \theta \hat{\mathbf{j}}) \text { is }\)

1 \(b \sin \theta \hat{\mathrm{i}}-a \cos \theta \hat{\mathrm{j}}\)
2 \(\frac{1}{\mathrm{a}} \sin \theta \hat{\mathrm{i}}-\frac{1}{\mathrm{~b}} \cos \theta \hat{\mathrm{j}}\)
3 \(5 \hat{\mathrm{k}}\)
4 all of these
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Motion in Plane

143544 Three forces \(F_{1}, F_{2}\) and \(F_{3}\) together keep a body in equilibrium. If \(F_{1}=3 \mathrm{~N}\) along the positive \(x\) axis, \(F_{2}=4 \mathrm{~N}\) along the positive \(y\)-axis, then the third force \(F_{3}\) is

1 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
2 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
3 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
4 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
Motion in Plane

143545 Magnitudes of four pairs of displacement vectors are given. Which pair of displacement vectors, under vector addition, fails to give a resultant vector of magnitude \(3 \mathrm{~cm}\) ?

1 \(2 \mathrm{~cm}, 7 \mathrm{~cm}\)
2 \(1 \mathrm{~cm}, 4 \mathrm{~cm}\)
3 \(2 \mathrm{~cm}, 3 \mathrm{~cm}\)
4 \(2 \mathrm{~cm}, 4 \mathrm{~cm}\)
Motion in Plane

143546 A body is under the action of two mutually perpendicular forces of \(3 \mathrm{~N}\) and \(4 \mathrm{~N}\). The resultant force acting on the body is

1 \(7 \mathrm{~N}\)
2 \(1 \mathrm{~N}\)
3 \(5 \mathrm{~N}\)
4 zero
Motion in Plane

143549 Two vectors are given by \(\vec{A}=3 \hat{i}+\hat{j}+3 \hat{k}\) and \(\vec{B}=3 \hat{i}+5 \hat{j}-2 \hat{k}\). Find the third vector \(\vec{C}\) if \(\overrightarrow{\mathbf{A}}+3 \overrightarrow{\mathrm{B}}-\overrightarrow{\mathbf{C}}=\mathbf{0}\)

1 \(12 \hat{i}+14 \hat{j}+12 \hat{k}\)
2 \(13 \hat{i}+17 \hat{j}+12 \hat{k}\)
3 \(12 \hat{i}+16 \hat{j}-3 \hat{k}\)
4 \(15 \hat{i}+13 \hat{j}+4 \hat{k}\)
Motion in Plane

143550 Vector which is perpendicular to a
\((\mathbf{a} \cos \theta \hat{\mathbf{i}}+\mathbf{b} \sin \theta \hat{\mathbf{j}}) \text { is }\)

1 \(b \sin \theta \hat{\mathrm{i}}-a \cos \theta \hat{\mathrm{j}}\)
2 \(\frac{1}{\mathrm{a}} \sin \theta \hat{\mathrm{i}}-\frac{1}{\mathrm{~b}} \cos \theta \hat{\mathrm{j}}\)
3 \(5 \hat{\mathrm{k}}\)
4 all of these
Motion in Plane

143544 Three forces \(F_{1}, F_{2}\) and \(F_{3}\) together keep a body in equilibrium. If \(F_{1}=3 \mathrm{~N}\) along the positive \(x\) axis, \(F_{2}=4 \mathrm{~N}\) along the positive \(y\)-axis, then the third force \(F_{3}\) is

1 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
2 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
3 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
4 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
Motion in Plane

143545 Magnitudes of four pairs of displacement vectors are given. Which pair of displacement vectors, under vector addition, fails to give a resultant vector of magnitude \(3 \mathrm{~cm}\) ?

1 \(2 \mathrm{~cm}, 7 \mathrm{~cm}\)
2 \(1 \mathrm{~cm}, 4 \mathrm{~cm}\)
3 \(2 \mathrm{~cm}, 3 \mathrm{~cm}\)
4 \(2 \mathrm{~cm}, 4 \mathrm{~cm}\)
Motion in Plane

143546 A body is under the action of two mutually perpendicular forces of \(3 \mathrm{~N}\) and \(4 \mathrm{~N}\). The resultant force acting on the body is

1 \(7 \mathrm{~N}\)
2 \(1 \mathrm{~N}\)
3 \(5 \mathrm{~N}\)
4 zero
Motion in Plane

143549 Two vectors are given by \(\vec{A}=3 \hat{i}+\hat{j}+3 \hat{k}\) and \(\vec{B}=3 \hat{i}+5 \hat{j}-2 \hat{k}\). Find the third vector \(\vec{C}\) if \(\overrightarrow{\mathbf{A}}+3 \overrightarrow{\mathrm{B}}-\overrightarrow{\mathbf{C}}=\mathbf{0}\)

1 \(12 \hat{i}+14 \hat{j}+12 \hat{k}\)
2 \(13 \hat{i}+17 \hat{j}+12 \hat{k}\)
3 \(12 \hat{i}+16 \hat{j}-3 \hat{k}\)
4 \(15 \hat{i}+13 \hat{j}+4 \hat{k}\)
Motion in Plane

143550 Vector which is perpendicular to a
\((\mathbf{a} \cos \theta \hat{\mathbf{i}}+\mathbf{b} \sin \theta \hat{\mathbf{j}}) \text { is }\)

1 \(b \sin \theta \hat{\mathrm{i}}-a \cos \theta \hat{\mathrm{j}}\)
2 \(\frac{1}{\mathrm{a}} \sin \theta \hat{\mathrm{i}}-\frac{1}{\mathrm{~b}} \cos \theta \hat{\mathrm{j}}\)
3 \(5 \hat{\mathrm{k}}\)
4 all of these
Motion in Plane

143544 Three forces \(F_{1}, F_{2}\) and \(F_{3}\) together keep a body in equilibrium. If \(F_{1}=3 \mathrm{~N}\) along the positive \(x\) axis, \(F_{2}=4 \mathrm{~N}\) along the positive \(y\)-axis, then the third force \(F_{3}\) is

1 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
2 \(5 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
3 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{3}{4}\right)\) with negative \(y\)-axis
4 \(7 \mathrm{~N}\) making an angle \(\theta=\tan ^{-1}\left(\frac{4}{3}\right)\) with negative \(y\)-axis
Motion in Plane

143545 Magnitudes of four pairs of displacement vectors are given. Which pair of displacement vectors, under vector addition, fails to give a resultant vector of magnitude \(3 \mathrm{~cm}\) ?

1 \(2 \mathrm{~cm}, 7 \mathrm{~cm}\)
2 \(1 \mathrm{~cm}, 4 \mathrm{~cm}\)
3 \(2 \mathrm{~cm}, 3 \mathrm{~cm}\)
4 \(2 \mathrm{~cm}, 4 \mathrm{~cm}\)
Motion in Plane

143546 A body is under the action of two mutually perpendicular forces of \(3 \mathrm{~N}\) and \(4 \mathrm{~N}\). The resultant force acting on the body is

1 \(7 \mathrm{~N}\)
2 \(1 \mathrm{~N}\)
3 \(5 \mathrm{~N}\)
4 zero
Motion in Plane

143549 Two vectors are given by \(\vec{A}=3 \hat{i}+\hat{j}+3 \hat{k}\) and \(\vec{B}=3 \hat{i}+5 \hat{j}-2 \hat{k}\). Find the third vector \(\vec{C}\) if \(\overrightarrow{\mathbf{A}}+3 \overrightarrow{\mathrm{B}}-\overrightarrow{\mathbf{C}}=\mathbf{0}\)

1 \(12 \hat{i}+14 \hat{j}+12 \hat{k}\)
2 \(13 \hat{i}+17 \hat{j}+12 \hat{k}\)
3 \(12 \hat{i}+16 \hat{j}-3 \hat{k}\)
4 \(15 \hat{i}+13 \hat{j}+4 \hat{k}\)
Motion in Plane

143550 Vector which is perpendicular to a
\((\mathbf{a} \cos \theta \hat{\mathbf{i}}+\mathbf{b} \sin \theta \hat{\mathbf{j}}) \text { is }\)

1 \(b \sin \theta \hat{\mathrm{i}}-a \cos \theta \hat{\mathrm{j}}\)
2 \(\frac{1}{\mathrm{a}} \sin \theta \hat{\mathrm{i}}-\frac{1}{\mathrm{~b}} \cos \theta \hat{\mathrm{j}}\)
3 \(5 \hat{\mathrm{k}}\)
4 all of these