00. Scalar and Vector Quantities
Motion in Plane

143530 The angle between two vectors \(6 \hat{i}+6 \hat{j}-3 \hat{k}\) and \(7 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) is given by

1 \(\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)\)
2 \(\cos ^{-1}\left(\frac{5}{\sqrt{3}}\right)\)
3 \(\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)\)
4 \(\sin ^{-1}\left(\frac{\sqrt{5}}{3}\right)\)
Motion in Plane

143531 The component of vector \(A=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}\) along the direction of \(\hat{\mathbf{i}}-\hat{\mathbf{j}}\) is

1 \(a_{x}-a_{y}+a_{z}\)
2 \(a_{x}-a_{y}\)
3 \(\left(a_{x}-a_{y}\right) / \sqrt{2}\)
4 \(\left(\mathrm{a}_{\mathrm{x}}+\mathrm{a}_{\mathrm{y}}+\mathrm{a}_{\mathrm{z}}\right)\)
Motion in Plane

143533 Given two vectors \(\vec{A}=-\hat{i}+2 \hat{j}-3 \hat{k}\) and \(\vec{B}=4 \hat{i}-2 \hat{j}+6 \hat{k}\). The angle made by \((\vec{A}+\vec{B})\) with \(x\)-axis is

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Motion in Plane

143534 Of the vectors given below, the parallel vectors are,
\(\overrightarrow{\mathrm{A}}=6 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}\)
\(\overrightarrow{\mathrm{B}}=210 \hat{\mathbf{i}}+280 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathrm{C}}=5.1 \hat{\mathbf{i}}+6.8 \hat{\mathbf{j}}\)
\(\overrightarrow{\mathrm{D}}=3.6 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+48 \hat{\mathrm{k}}\)

1 \(\vec{A}\) and \(\vec{B}\)
2 \(\overrightarrow{\mathrm{A}}\) and \(\overrightarrow{\mathrm{C}}\)
3 \(\vec{A}\) and \(\vec{D}\)
4 \(\vec{C}\) and \(\vec{D}\)
Motion in Plane

143530 The angle between two vectors \(6 \hat{i}+6 \hat{j}-3 \hat{k}\) and \(7 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) is given by

1 \(\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)\)
2 \(\cos ^{-1}\left(\frac{5}{\sqrt{3}}\right)\)
3 \(\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)\)
4 \(\sin ^{-1}\left(\frac{\sqrt{5}}{3}\right)\)
Motion in Plane

143531 The component of vector \(A=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}\) along the direction of \(\hat{\mathbf{i}}-\hat{\mathbf{j}}\) is

1 \(a_{x}-a_{y}+a_{z}\)
2 \(a_{x}-a_{y}\)
3 \(\left(a_{x}-a_{y}\right) / \sqrt{2}\)
4 \(\left(\mathrm{a}_{\mathrm{x}}+\mathrm{a}_{\mathrm{y}}+\mathrm{a}_{\mathrm{z}}\right)\)
Motion in Plane

143533 Given two vectors \(\vec{A}=-\hat{i}+2 \hat{j}-3 \hat{k}\) and \(\vec{B}=4 \hat{i}-2 \hat{j}+6 \hat{k}\). The angle made by \((\vec{A}+\vec{B})\) with \(x\)-axis is

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Motion in Plane

143534 Of the vectors given below, the parallel vectors are,
\(\overrightarrow{\mathrm{A}}=6 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}\)
\(\overrightarrow{\mathrm{B}}=210 \hat{\mathbf{i}}+280 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathrm{C}}=5.1 \hat{\mathbf{i}}+6.8 \hat{\mathbf{j}}\)
\(\overrightarrow{\mathrm{D}}=3.6 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+48 \hat{\mathrm{k}}\)

1 \(\vec{A}\) and \(\vec{B}\)
2 \(\overrightarrow{\mathrm{A}}\) and \(\overrightarrow{\mathrm{C}}\)
3 \(\vec{A}\) and \(\vec{D}\)
4 \(\vec{C}\) and \(\vec{D}\)
Motion in Plane

143530 The angle between two vectors \(6 \hat{i}+6 \hat{j}-3 \hat{k}\) and \(7 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) is given by

1 \(\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)\)
2 \(\cos ^{-1}\left(\frac{5}{\sqrt{3}}\right)\)
3 \(\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)\)
4 \(\sin ^{-1}\left(\frac{\sqrt{5}}{3}\right)\)
Motion in Plane

143531 The component of vector \(A=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}\) along the direction of \(\hat{\mathbf{i}}-\hat{\mathbf{j}}\) is

1 \(a_{x}-a_{y}+a_{z}\)
2 \(a_{x}-a_{y}\)
3 \(\left(a_{x}-a_{y}\right) / \sqrt{2}\)
4 \(\left(\mathrm{a}_{\mathrm{x}}+\mathrm{a}_{\mathrm{y}}+\mathrm{a}_{\mathrm{z}}\right)\)
Motion in Plane

143533 Given two vectors \(\vec{A}=-\hat{i}+2 \hat{j}-3 \hat{k}\) and \(\vec{B}=4 \hat{i}-2 \hat{j}+6 \hat{k}\). The angle made by \((\vec{A}+\vec{B})\) with \(x\)-axis is

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Motion in Plane

143534 Of the vectors given below, the parallel vectors are,
\(\overrightarrow{\mathrm{A}}=6 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}\)
\(\overrightarrow{\mathrm{B}}=210 \hat{\mathbf{i}}+280 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathrm{C}}=5.1 \hat{\mathbf{i}}+6.8 \hat{\mathbf{j}}\)
\(\overrightarrow{\mathrm{D}}=3.6 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+48 \hat{\mathrm{k}}\)

1 \(\vec{A}\) and \(\vec{B}\)
2 \(\overrightarrow{\mathrm{A}}\) and \(\overrightarrow{\mathrm{C}}\)
3 \(\vec{A}\) and \(\vec{D}\)
4 \(\vec{C}\) and \(\vec{D}\)
Motion in Plane

143530 The angle between two vectors \(6 \hat{i}+6 \hat{j}-3 \hat{k}\) and \(7 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+4 \hat{\mathbf{k}}\) is given by

1 \(\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)\)
2 \(\cos ^{-1}\left(\frac{5}{\sqrt{3}}\right)\)
3 \(\sin ^{-1}\left(\frac{2}{\sqrt{3}}\right)\)
4 \(\sin ^{-1}\left(\frac{\sqrt{5}}{3}\right)\)
Motion in Plane

143531 The component of vector \(A=a_{x} \hat{i}+a_{y} \hat{j}+a_{z} \hat{k}\) along the direction of \(\hat{\mathbf{i}}-\hat{\mathbf{j}}\) is

1 \(a_{x}-a_{y}+a_{z}\)
2 \(a_{x}-a_{y}\)
3 \(\left(a_{x}-a_{y}\right) / \sqrt{2}\)
4 \(\left(\mathrm{a}_{\mathrm{x}}+\mathrm{a}_{\mathrm{y}}+\mathrm{a}_{\mathrm{z}}\right)\)
Motion in Plane

143533 Given two vectors \(\vec{A}=-\hat{i}+2 \hat{j}-3 \hat{k}\) and \(\vec{B}=4 \hat{i}-2 \hat{j}+6 \hat{k}\). The angle made by \((\vec{A}+\vec{B})\) with \(x\)-axis is

1 \(30^{\circ}\)
2 \(45^{\circ}\)
3 \(60^{\circ}\)
4 \(90^{\circ}\)
Motion in Plane

143534 Of the vectors given below, the parallel vectors are,
\(\overrightarrow{\mathrm{A}}=6 \hat{\mathbf{i}}+8 \hat{\mathbf{j}}\)
\(\overrightarrow{\mathrm{B}}=210 \hat{\mathbf{i}}+280 \hat{\mathbf{k}}\)
\(\overrightarrow{\mathrm{C}}=5.1 \hat{\mathbf{i}}+6.8 \hat{\mathbf{j}}\)
\(\overrightarrow{\mathrm{D}}=3.6 \hat{\mathbf{i}}+6 \hat{\mathbf{j}}+48 \hat{\mathrm{k}}\)

1 \(\vec{A}\) and \(\vec{B}\)
2 \(\overrightarrow{\mathrm{A}}\) and \(\overrightarrow{\mathrm{C}}\)
3 \(\vec{A}\) and \(\vec{D}\)
4 \(\vec{C}\) and \(\vec{D}\)