01. Speed, Velocity and Acceleration
Motion in One Dimensions

141434 Distances travelled by a body in first three successive equal intervals of time are in the ratio if it starts from rest and moves with uniform acceleration:

1 \(1: 2: 3\)
2 \(1: 3: 5\)
3 \(1: 2^{2}: 3^{2}\)
4 \(1: 3^{2}: 5^{2}\)
Motion in One Dimensions

141435 Motion of a particle is given by equation \(s=\) \(\left(3 t^{3}+7 t^{2}+3 t+8\right) m\). The acceleration of the particle at \(t=1\) seconds is

1 \(32 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(10 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(16 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(23 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
Motion in One Dimensions

141436 Find the initial velocity of a body moving with a uniform acceleration covering \(40 \mathrm{~m}\) in the first 5 seconds and \(65 \mathrm{~m}\) in the next 5 seconds?

1 \(11 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(5.5 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(2.5 \mathrm{~m} . \mathrm{s}^{-1}\)
4 \(4 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
Motion in One Dimensions

141437 The position of an object moving along \(\mathrm{X}\)-axis is given by \(x=\alpha+\beta t^{2}\), where \(\alpha\) and \(\beta\) are constants with appropriate dimensions and \(t\) is time in seconds. The average velocity between \(t\) \(=2 \mathrm{~s}\) and \(4 \mathrm{~s}\) is \(12 \mathrm{~m} / \mathrm{s}\). If \(\alpha=8 \mathrm{~m}\), then the value of \(\beta\) is

1 \(0.5 \mathrm{~m} / \mathrm{s}^{2}\)
2 \(2 \mathrm{~m} / \mathrm{s}^{2}\)
3 \(4 \mathrm{~m} / \mathrm{s}^{2}\)
4 \(5 \mathrm{~m} / \mathrm{s}^{2}\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Motion in One Dimensions

141434 Distances travelled by a body in first three successive equal intervals of time are in the ratio if it starts from rest and moves with uniform acceleration:

1 \(1: 2: 3\)
2 \(1: 3: 5\)
3 \(1: 2^{2}: 3^{2}\)
4 \(1: 3^{2}: 5^{2}\)
Motion in One Dimensions

141435 Motion of a particle is given by equation \(s=\) \(\left(3 t^{3}+7 t^{2}+3 t+8\right) m\). The acceleration of the particle at \(t=1\) seconds is

1 \(32 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(10 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(16 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(23 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
Motion in One Dimensions

141436 Find the initial velocity of a body moving with a uniform acceleration covering \(40 \mathrm{~m}\) in the first 5 seconds and \(65 \mathrm{~m}\) in the next 5 seconds?

1 \(11 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(5.5 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(2.5 \mathrm{~m} . \mathrm{s}^{-1}\)
4 \(4 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
Motion in One Dimensions

141437 The position of an object moving along \(\mathrm{X}\)-axis is given by \(x=\alpha+\beta t^{2}\), where \(\alpha\) and \(\beta\) are constants with appropriate dimensions and \(t\) is time in seconds. The average velocity between \(t\) \(=2 \mathrm{~s}\) and \(4 \mathrm{~s}\) is \(12 \mathrm{~m} / \mathrm{s}\). If \(\alpha=8 \mathrm{~m}\), then the value of \(\beta\) is

1 \(0.5 \mathrm{~m} / \mathrm{s}^{2}\)
2 \(2 \mathrm{~m} / \mathrm{s}^{2}\)
3 \(4 \mathrm{~m} / \mathrm{s}^{2}\)
4 \(5 \mathrm{~m} / \mathrm{s}^{2}\)
Motion in One Dimensions

141434 Distances travelled by a body in first three successive equal intervals of time are in the ratio if it starts from rest and moves with uniform acceleration:

1 \(1: 2: 3\)
2 \(1: 3: 5\)
3 \(1: 2^{2}: 3^{2}\)
4 \(1: 3^{2}: 5^{2}\)
Motion in One Dimensions

141435 Motion of a particle is given by equation \(s=\) \(\left(3 t^{3}+7 t^{2}+3 t+8\right) m\). The acceleration of the particle at \(t=1\) seconds is

1 \(32 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(10 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(16 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(23 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
Motion in One Dimensions

141436 Find the initial velocity of a body moving with a uniform acceleration covering \(40 \mathrm{~m}\) in the first 5 seconds and \(65 \mathrm{~m}\) in the next 5 seconds?

1 \(11 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(5.5 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(2.5 \mathrm{~m} . \mathrm{s}^{-1}\)
4 \(4 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
Motion in One Dimensions

141437 The position of an object moving along \(\mathrm{X}\)-axis is given by \(x=\alpha+\beta t^{2}\), where \(\alpha\) and \(\beta\) are constants with appropriate dimensions and \(t\) is time in seconds. The average velocity between \(t\) \(=2 \mathrm{~s}\) and \(4 \mathrm{~s}\) is \(12 \mathrm{~m} / \mathrm{s}\). If \(\alpha=8 \mathrm{~m}\), then the value of \(\beta\) is

1 \(0.5 \mathrm{~m} / \mathrm{s}^{2}\)
2 \(2 \mathrm{~m} / \mathrm{s}^{2}\)
3 \(4 \mathrm{~m} / \mathrm{s}^{2}\)
4 \(5 \mathrm{~m} / \mathrm{s}^{2}\)
Motion in One Dimensions

141434 Distances travelled by a body in first three successive equal intervals of time are in the ratio if it starts from rest and moves with uniform acceleration:

1 \(1: 2: 3\)
2 \(1: 3: 5\)
3 \(1: 2^{2}: 3^{2}\)
4 \(1: 3^{2}: 5^{2}\)
Motion in One Dimensions

141435 Motion of a particle is given by equation \(s=\) \(\left(3 t^{3}+7 t^{2}+3 t+8\right) m\). The acceleration of the particle at \(t=1\) seconds is

1 \(32 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(10 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(16 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(23 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
Motion in One Dimensions

141436 Find the initial velocity of a body moving with a uniform acceleration covering \(40 \mathrm{~m}\) in the first 5 seconds and \(65 \mathrm{~m}\) in the next 5 seconds?

1 \(11 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(5.5 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(2.5 \mathrm{~m} . \mathrm{s}^{-1}\)
4 \(4 \mathrm{~m} \cdot \mathrm{s}^{-1}\)
Motion in One Dimensions

141437 The position of an object moving along \(\mathrm{X}\)-axis is given by \(x=\alpha+\beta t^{2}\), where \(\alpha\) and \(\beta\) are constants with appropriate dimensions and \(t\) is time in seconds. The average velocity between \(t\) \(=2 \mathrm{~s}\) and \(4 \mathrm{~s}\) is \(12 \mathrm{~m} / \mathrm{s}\). If \(\alpha=8 \mathrm{~m}\), then the value of \(\beta\) is

1 \(0.5 \mathrm{~m} / \mathrm{s}^{2}\)
2 \(2 \mathrm{~m} / \mathrm{s}^{2}\)
3 \(4 \mathrm{~m} / \mathrm{s}^{2}\)
4 \(5 \mathrm{~m} / \mathrm{s}^{2}\)