01. Speed, Velocity and Acceleration
Motion in One Dimensions

141429 To reach point-B from point-A, a person travels \(500 \mathrm{~m}\) North, \(400 \mathrm{~m}\) East and \(200 \mathrm{~m}\) south. If the person takes 1200 seconds to reach point-B from point-A then find the average velocity of the person

1 \(\frac{5}{12} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(\frac{5}{20} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(\frac{10}{3} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
4 \(\frac{12}{5} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
Motion in One Dimensions

141430 A particle is at \(x=0\) when \(t=0\). It moves among \(x\)-axis with a velocity given by \(v=5 \sqrt{x}\). Find the acceleration of this particle

1 \(8.5 \mathrm{~m} . \mathrm{s}^{-2}\)
2 \(12.5 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(10.5 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(11.5 \mathrm{~m} . \mathrm{s}^{-2}\)
Motion in One Dimensions

141432 The acceleration (a) of an object varies as a function of its velocity \((v)\) as \(a=\lambda \sqrt{v}\) where \(\lambda\) is a constant. If at \(t=0, v=0\), then the velocity as a function of time \((t)\) is given as

1 \(\frac{3}{4} \lambda^{2} t^{3}\)
2 \(\frac{1}{4} \lambda t\)
3 \(\frac{1}{4} \lambda^{2} t^{2}\)
4 \(\frac{1}{4} \lambda^{2} t\)
Motion in One Dimensions

141433 Find the relation between ' \(x\) ' and ' \(y\) ', when a body starting from rest, moves with uniform acceleration and travels a distance \(x\) in the first \(\mathbf{n}\) seconds and \(\mathbf{y}\) in the next \(\mathrm{n}\) seconds:

1 \(3 x=y\)
2 \(x=3 y\)
3 \(\mathrm{x}=\mathrm{y}\)
4 \(x=2 y\)
Motion in One Dimensions

141429 To reach point-B from point-A, a person travels \(500 \mathrm{~m}\) North, \(400 \mathrm{~m}\) East and \(200 \mathrm{~m}\) south. If the person takes 1200 seconds to reach point-B from point-A then find the average velocity of the person

1 \(\frac{5}{12} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(\frac{5}{20} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(\frac{10}{3} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
4 \(\frac{12}{5} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
Motion in One Dimensions

141430 A particle is at \(x=0\) when \(t=0\). It moves among \(x\)-axis with a velocity given by \(v=5 \sqrt{x}\). Find the acceleration of this particle

1 \(8.5 \mathrm{~m} . \mathrm{s}^{-2}\)
2 \(12.5 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(10.5 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(11.5 \mathrm{~m} . \mathrm{s}^{-2}\)
Motion in One Dimensions

141432 The acceleration (a) of an object varies as a function of its velocity \((v)\) as \(a=\lambda \sqrt{v}\) where \(\lambda\) is a constant. If at \(t=0, v=0\), then the velocity as a function of time \((t)\) is given as

1 \(\frac{3}{4} \lambda^{2} t^{3}\)
2 \(\frac{1}{4} \lambda t\)
3 \(\frac{1}{4} \lambda^{2} t^{2}\)
4 \(\frac{1}{4} \lambda^{2} t\)
Motion in One Dimensions

141433 Find the relation between ' \(x\) ' and ' \(y\) ', when a body starting from rest, moves with uniform acceleration and travels a distance \(x\) in the first \(\mathbf{n}\) seconds and \(\mathbf{y}\) in the next \(\mathrm{n}\) seconds:

1 \(3 x=y\)
2 \(x=3 y\)
3 \(\mathrm{x}=\mathrm{y}\)
4 \(x=2 y\)
Motion in One Dimensions

141429 To reach point-B from point-A, a person travels \(500 \mathrm{~m}\) North, \(400 \mathrm{~m}\) East and \(200 \mathrm{~m}\) south. If the person takes 1200 seconds to reach point-B from point-A then find the average velocity of the person

1 \(\frac{5}{12} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(\frac{5}{20} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(\frac{10}{3} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
4 \(\frac{12}{5} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
Motion in One Dimensions

141430 A particle is at \(x=0\) when \(t=0\). It moves among \(x\)-axis with a velocity given by \(v=5 \sqrt{x}\). Find the acceleration of this particle

1 \(8.5 \mathrm{~m} . \mathrm{s}^{-2}\)
2 \(12.5 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(10.5 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(11.5 \mathrm{~m} . \mathrm{s}^{-2}\)
Motion in One Dimensions

141432 The acceleration (a) of an object varies as a function of its velocity \((v)\) as \(a=\lambda \sqrt{v}\) where \(\lambda\) is a constant. If at \(t=0, v=0\), then the velocity as a function of time \((t)\) is given as

1 \(\frac{3}{4} \lambda^{2} t^{3}\)
2 \(\frac{1}{4} \lambda t\)
3 \(\frac{1}{4} \lambda^{2} t^{2}\)
4 \(\frac{1}{4} \lambda^{2} t\)
Motion in One Dimensions

141433 Find the relation between ' \(x\) ' and ' \(y\) ', when a body starting from rest, moves with uniform acceleration and travels a distance \(x\) in the first \(\mathbf{n}\) seconds and \(\mathbf{y}\) in the next \(\mathrm{n}\) seconds:

1 \(3 x=y\)
2 \(x=3 y\)
3 \(\mathrm{x}=\mathrm{y}\)
4 \(x=2 y\)
Motion in One Dimensions

141429 To reach point-B from point-A, a person travels \(500 \mathrm{~m}\) North, \(400 \mathrm{~m}\) East and \(200 \mathrm{~m}\) south. If the person takes 1200 seconds to reach point-B from point-A then find the average velocity of the person

1 \(\frac{5}{12} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
2 \(\frac{5}{20} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
3 \(\frac{10}{3} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
4 \(\frac{12}{5} \mathrm{~m} \cdot \mathrm{s}^{-1}\)
Motion in One Dimensions

141430 A particle is at \(x=0\) when \(t=0\). It moves among \(x\)-axis with a velocity given by \(v=5 \sqrt{x}\). Find the acceleration of this particle

1 \(8.5 \mathrm{~m} . \mathrm{s}^{-2}\)
2 \(12.5 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(10.5 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(11.5 \mathrm{~m} . \mathrm{s}^{-2}\)
Motion in One Dimensions

141432 The acceleration (a) of an object varies as a function of its velocity \((v)\) as \(a=\lambda \sqrt{v}\) where \(\lambda\) is a constant. If at \(t=0, v=0\), then the velocity as a function of time \((t)\) is given as

1 \(\frac{3}{4} \lambda^{2} t^{3}\)
2 \(\frac{1}{4} \lambda t\)
3 \(\frac{1}{4} \lambda^{2} t^{2}\)
4 \(\frac{1}{4} \lambda^{2} t\)
Motion in One Dimensions

141433 Find the relation between ' \(x\) ' and ' \(y\) ', when a body starting from rest, moves with uniform acceleration and travels a distance \(x\) in the first \(\mathbf{n}\) seconds and \(\mathbf{y}\) in the next \(\mathrm{n}\) seconds:

1 \(3 x=y\)
2 \(x=3 y\)
3 \(\mathrm{x}=\mathrm{y}\)
4 \(x=2 y\)