00. Distance and Displacement
Motion in One Dimensions

141215 A person sitting in the ground floor of a building notices through the window of height \(1.5 \mathrm{~m}\), a ball dropped from the roof of the building crosses the window in \(0.1 \mathrm{~s}\). What is the velocity of the ball when it is at the topmost point of the window? \(\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\)

1 \(15.5 \mathrm{~m} / \mathrm{s}\)
2 \(14.5 \mathrm{~m} / \mathrm{s}\)
3 \(4.5 \mathrm{~m} / \mathrm{s}\)
4 \(20 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141216 A particle starts from the origin with an initial velocity \(\overrightarrow{\mathbf{u}}=(3.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}\) and a constant acceleration \(\overrightarrow{\mathbf{a}}=(-0.5 \hat{\mathbf{i}}-\mathbf{1 . 0} \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}^{2}\). The velocity of the particle when it reaches its maximum y coordinate is:

1 \(2 \hat{\mathrm{i}}\)
2 \(-1.5 \hat{\mathrm{i}}+1.5 \hat{\mathrm{j}}\)
3 \(-1.5 \hat{\mathrm{i}}\)
4 \(1.5 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}\)
Motion in One Dimensions

141217 An object is moving in a plane and its trajectory \(\overline{\mathbf{r}}(\mathbf{t})\) (in meter) is given by, \(\overline{\mathbf{r}}(t)=\left(3 t^{2}+2 t\right) \hat{\mathbf{i}}+2 t \hat{\mathbf{j}}\), where \(t\) is time (in second). The angle that the velocity vector makes with the \(X\)-axis at \(t=0\).

1 \(0^{\circ}\)
2 \(30^{\circ}\)
3 \(45^{\circ}\)
4 \(60^{\circ}\)
Motion in One Dimensions

141219 Starting from a point on circumference of a circle of radius ' \(r\) ', a person moves to a point which is diametrically opposite its initial position. The distance travelled and displacement are respectively

1 \(2 \pi \mathrm{r}, 0\)
2 \(\pi \mathrm{r}, 2 \mathrm{r}\)
3 \(2 \mathrm{r}, 2 \pi \mathrm{r}\)
4 \(2 \mathrm{r}, \pi \mathrm{r}\)
Motion in One Dimensions

141220 The displacement is given by \(x=2 t^{2}+t+5\), the acceleration at \(\mathbf{t}=2 \mathrm{~s}\) is

1 \(4 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(10 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(15 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
Motion in One Dimensions

141215 A person sitting in the ground floor of a building notices through the window of height \(1.5 \mathrm{~m}\), a ball dropped from the roof of the building crosses the window in \(0.1 \mathrm{~s}\). What is the velocity of the ball when it is at the topmost point of the window? \(\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\)

1 \(15.5 \mathrm{~m} / \mathrm{s}\)
2 \(14.5 \mathrm{~m} / \mathrm{s}\)
3 \(4.5 \mathrm{~m} / \mathrm{s}\)
4 \(20 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141216 A particle starts from the origin with an initial velocity \(\overrightarrow{\mathbf{u}}=(3.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}\) and a constant acceleration \(\overrightarrow{\mathbf{a}}=(-0.5 \hat{\mathbf{i}}-\mathbf{1 . 0} \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}^{2}\). The velocity of the particle when it reaches its maximum y coordinate is:

1 \(2 \hat{\mathrm{i}}\)
2 \(-1.5 \hat{\mathrm{i}}+1.5 \hat{\mathrm{j}}\)
3 \(-1.5 \hat{\mathrm{i}}\)
4 \(1.5 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}\)
Motion in One Dimensions

141217 An object is moving in a plane and its trajectory \(\overline{\mathbf{r}}(\mathbf{t})\) (in meter) is given by, \(\overline{\mathbf{r}}(t)=\left(3 t^{2}+2 t\right) \hat{\mathbf{i}}+2 t \hat{\mathbf{j}}\), where \(t\) is time (in second). The angle that the velocity vector makes with the \(X\)-axis at \(t=0\).

1 \(0^{\circ}\)
2 \(30^{\circ}\)
3 \(45^{\circ}\)
4 \(60^{\circ}\)
Motion in One Dimensions

141219 Starting from a point on circumference of a circle of radius ' \(r\) ', a person moves to a point which is diametrically opposite its initial position. The distance travelled and displacement are respectively

1 \(2 \pi \mathrm{r}, 0\)
2 \(\pi \mathrm{r}, 2 \mathrm{r}\)
3 \(2 \mathrm{r}, 2 \pi \mathrm{r}\)
4 \(2 \mathrm{r}, \pi \mathrm{r}\)
Motion in One Dimensions

141220 The displacement is given by \(x=2 t^{2}+t+5\), the acceleration at \(\mathbf{t}=2 \mathrm{~s}\) is

1 \(4 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(10 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(15 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
Motion in One Dimensions

141215 A person sitting in the ground floor of a building notices through the window of height \(1.5 \mathrm{~m}\), a ball dropped from the roof of the building crosses the window in \(0.1 \mathrm{~s}\). What is the velocity of the ball when it is at the topmost point of the window? \(\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\)

1 \(15.5 \mathrm{~m} / \mathrm{s}\)
2 \(14.5 \mathrm{~m} / \mathrm{s}\)
3 \(4.5 \mathrm{~m} / \mathrm{s}\)
4 \(20 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141216 A particle starts from the origin with an initial velocity \(\overrightarrow{\mathbf{u}}=(3.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}\) and a constant acceleration \(\overrightarrow{\mathbf{a}}=(-0.5 \hat{\mathbf{i}}-\mathbf{1 . 0} \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}^{2}\). The velocity of the particle when it reaches its maximum y coordinate is:

1 \(2 \hat{\mathrm{i}}\)
2 \(-1.5 \hat{\mathrm{i}}+1.5 \hat{\mathrm{j}}\)
3 \(-1.5 \hat{\mathrm{i}}\)
4 \(1.5 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}\)
Motion in One Dimensions

141217 An object is moving in a plane and its trajectory \(\overline{\mathbf{r}}(\mathbf{t})\) (in meter) is given by, \(\overline{\mathbf{r}}(t)=\left(3 t^{2}+2 t\right) \hat{\mathbf{i}}+2 t \hat{\mathbf{j}}\), where \(t\) is time (in second). The angle that the velocity vector makes with the \(X\)-axis at \(t=0\).

1 \(0^{\circ}\)
2 \(30^{\circ}\)
3 \(45^{\circ}\)
4 \(60^{\circ}\)
Motion in One Dimensions

141219 Starting from a point on circumference of a circle of radius ' \(r\) ', a person moves to a point which is diametrically opposite its initial position. The distance travelled and displacement are respectively

1 \(2 \pi \mathrm{r}, 0\)
2 \(\pi \mathrm{r}, 2 \mathrm{r}\)
3 \(2 \mathrm{r}, 2 \pi \mathrm{r}\)
4 \(2 \mathrm{r}, \pi \mathrm{r}\)
Motion in One Dimensions

141220 The displacement is given by \(x=2 t^{2}+t+5\), the acceleration at \(\mathbf{t}=2 \mathrm{~s}\) is

1 \(4 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(10 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(15 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
Motion in One Dimensions

141215 A person sitting in the ground floor of a building notices through the window of height \(1.5 \mathrm{~m}\), a ball dropped from the roof of the building crosses the window in \(0.1 \mathrm{~s}\). What is the velocity of the ball when it is at the topmost point of the window? \(\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\)

1 \(15.5 \mathrm{~m} / \mathrm{s}\)
2 \(14.5 \mathrm{~m} / \mathrm{s}\)
3 \(4.5 \mathrm{~m} / \mathrm{s}\)
4 \(20 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141216 A particle starts from the origin with an initial velocity \(\overrightarrow{\mathbf{u}}=(3.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}\) and a constant acceleration \(\overrightarrow{\mathbf{a}}=(-0.5 \hat{\mathbf{i}}-\mathbf{1 . 0} \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}^{2}\). The velocity of the particle when it reaches its maximum y coordinate is:

1 \(2 \hat{\mathrm{i}}\)
2 \(-1.5 \hat{\mathrm{i}}+1.5 \hat{\mathrm{j}}\)
3 \(-1.5 \hat{\mathrm{i}}\)
4 \(1.5 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}\)
Motion in One Dimensions

141217 An object is moving in a plane and its trajectory \(\overline{\mathbf{r}}(\mathbf{t})\) (in meter) is given by, \(\overline{\mathbf{r}}(t)=\left(3 t^{2}+2 t\right) \hat{\mathbf{i}}+2 t \hat{\mathbf{j}}\), where \(t\) is time (in second). The angle that the velocity vector makes with the \(X\)-axis at \(t=0\).

1 \(0^{\circ}\)
2 \(30^{\circ}\)
3 \(45^{\circ}\)
4 \(60^{\circ}\)
Motion in One Dimensions

141219 Starting from a point on circumference of a circle of radius ' \(r\) ', a person moves to a point which is diametrically opposite its initial position. The distance travelled and displacement are respectively

1 \(2 \pi \mathrm{r}, 0\)
2 \(\pi \mathrm{r}, 2 \mathrm{r}\)
3 \(2 \mathrm{r}, 2 \pi \mathrm{r}\)
4 \(2 \mathrm{r}, \pi \mathrm{r}\)
Motion in One Dimensions

141220 The displacement is given by \(x=2 t^{2}+t+5\), the acceleration at \(\mathbf{t}=2 \mathrm{~s}\) is

1 \(4 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(10 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(15 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
Motion in One Dimensions

141215 A person sitting in the ground floor of a building notices through the window of height \(1.5 \mathrm{~m}\), a ball dropped from the roof of the building crosses the window in \(0.1 \mathrm{~s}\). What is the velocity of the ball when it is at the topmost point of the window? \(\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)\)

1 \(15.5 \mathrm{~m} / \mathrm{s}\)
2 \(14.5 \mathrm{~m} / \mathrm{s}\)
3 \(4.5 \mathrm{~m} / \mathrm{s}\)
4 \(20 \mathrm{~m} / \mathrm{s}\)
Motion in One Dimensions

141216 A particle starts from the origin with an initial velocity \(\overrightarrow{\mathbf{u}}=(3.0 \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}\) and a constant acceleration \(\overrightarrow{\mathbf{a}}=(-0.5 \hat{\mathbf{i}}-\mathbf{1 . 0} \hat{\mathbf{j}}) \mathrm{m} / \mathrm{s}^{2}\). The velocity of the particle when it reaches its maximum y coordinate is:

1 \(2 \hat{\mathrm{i}}\)
2 \(-1.5 \hat{\mathrm{i}}+1.5 \hat{\mathrm{j}}\)
3 \(-1.5 \hat{\mathrm{i}}\)
4 \(1.5 \hat{\mathrm{i}}+1.0 \hat{\mathrm{j}}\)
Motion in One Dimensions

141217 An object is moving in a plane and its trajectory \(\overline{\mathbf{r}}(\mathbf{t})\) (in meter) is given by, \(\overline{\mathbf{r}}(t)=\left(3 t^{2}+2 t\right) \hat{\mathbf{i}}+2 t \hat{\mathbf{j}}\), where \(t\) is time (in second). The angle that the velocity vector makes with the \(X\)-axis at \(t=0\).

1 \(0^{\circ}\)
2 \(30^{\circ}\)
3 \(45^{\circ}\)
4 \(60^{\circ}\)
Motion in One Dimensions

141219 Starting from a point on circumference of a circle of radius ' \(r\) ', a person moves to a point which is diametrically opposite its initial position. The distance travelled and displacement are respectively

1 \(2 \pi \mathrm{r}, 0\)
2 \(\pi \mathrm{r}, 2 \mathrm{r}\)
3 \(2 \mathrm{r}, 2 \pi \mathrm{r}\)
4 \(2 \mathrm{r}, \pi \mathrm{r}\)
Motion in One Dimensions

141220 The displacement is given by \(x=2 t^{2}+t+5\), the acceleration at \(\mathbf{t}=2 \mathrm{~s}\) is

1 \(4 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
2 \(8 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
3 \(10 \mathrm{~m} \cdot \mathrm{s}^{-2}\)
4 \(15 \mathrm{~m} \cdot \mathrm{s}^{-2}\)