02. Dimensions of Physical Quantities and Its Applications
Units and Measurements

139509 The equation of state of some gases can be expressed as
\(\left(p+\frac{a}{V^{2}}\right)(V-b)=R T\)
where, \(p\) is the pressure, \(V\) the volume, \(T\) the absolute temperature and \(a\) and \(b\) are constants. The dimensional formula of \(a\) is

1 \(\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{5} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{-5} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139510 The dimensions of universal gravitational constant are-

1 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{-3} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139513 If the force is given by \(F=a t+b t^{2}\) with \(t\) as time. The dimensions of \(a\) and \(b\) are

1 \(\left[\mathrm{MLT}^{-4}\right]\) and \(\left[\mathrm{MLT}^{-2}\right]\)
2 \(\left[\mathrm{MLT}^{-3}\right]\) and \(\left[\mathrm{MLT}^{-4}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-4}\right]\)
Units and Measurements

139515 The dimension of angular momentum is

1 \(\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]\)
2 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
4 \(\left[\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139516 The speed of light (c), gravitation constant (G), and Plank's constant \((h)\) are taken as the fundamental units in a system. The dimension of time in this new system should be:

1 \(\left[G^{1 / 2} h^{1 / 2} c^{-5 / 2}\right]\)
2 \(\left[G^{-1 / 2} h^{1 / 2} c^{1 / 2}\right]\)
3 \(\left[G^{1 / 2} h^{1 / 2} c^{-3 / 2}\right]\)
4 \(\left[G^{1 / 2} h^{1 / 2} c^{1 / 2}\right]\)
Units and Measurements

139509 The equation of state of some gases can be expressed as
\(\left(p+\frac{a}{V^{2}}\right)(V-b)=R T\)
where, \(p\) is the pressure, \(V\) the volume, \(T\) the absolute temperature and \(a\) and \(b\) are constants. The dimensional formula of \(a\) is

1 \(\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{5} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{-5} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139510 The dimensions of universal gravitational constant are-

1 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{-3} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139513 If the force is given by \(F=a t+b t^{2}\) with \(t\) as time. The dimensions of \(a\) and \(b\) are

1 \(\left[\mathrm{MLT}^{-4}\right]\) and \(\left[\mathrm{MLT}^{-2}\right]\)
2 \(\left[\mathrm{MLT}^{-3}\right]\) and \(\left[\mathrm{MLT}^{-4}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-4}\right]\)
Units and Measurements

139515 The dimension of angular momentum is

1 \(\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]\)
2 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
4 \(\left[\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139516 The speed of light (c), gravitation constant (G), and Plank's constant \((h)\) are taken as the fundamental units in a system. The dimension of time in this new system should be:

1 \(\left[G^{1 / 2} h^{1 / 2} c^{-5 / 2}\right]\)
2 \(\left[G^{-1 / 2} h^{1 / 2} c^{1 / 2}\right]\)
3 \(\left[G^{1 / 2} h^{1 / 2} c^{-3 / 2}\right]\)
4 \(\left[G^{1 / 2} h^{1 / 2} c^{1 / 2}\right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Units and Measurements

139509 The equation of state of some gases can be expressed as
\(\left(p+\frac{a}{V^{2}}\right)(V-b)=R T\)
where, \(p\) is the pressure, \(V\) the volume, \(T\) the absolute temperature and \(a\) and \(b\) are constants. The dimensional formula of \(a\) is

1 \(\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{5} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{-5} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139510 The dimensions of universal gravitational constant are-

1 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{-3} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139513 If the force is given by \(F=a t+b t^{2}\) with \(t\) as time. The dimensions of \(a\) and \(b\) are

1 \(\left[\mathrm{MLT}^{-4}\right]\) and \(\left[\mathrm{MLT}^{-2}\right]\)
2 \(\left[\mathrm{MLT}^{-3}\right]\) and \(\left[\mathrm{MLT}^{-4}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-4}\right]\)
Units and Measurements

139515 The dimension of angular momentum is

1 \(\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]\)
2 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
4 \(\left[\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139516 The speed of light (c), gravitation constant (G), and Plank's constant \((h)\) are taken as the fundamental units in a system. The dimension of time in this new system should be:

1 \(\left[G^{1 / 2} h^{1 / 2} c^{-5 / 2}\right]\)
2 \(\left[G^{-1 / 2} h^{1 / 2} c^{1 / 2}\right]\)
3 \(\left[G^{1 / 2} h^{1 / 2} c^{-3 / 2}\right]\)
4 \(\left[G^{1 / 2} h^{1 / 2} c^{1 / 2}\right]\)
Units and Measurements

139509 The equation of state of some gases can be expressed as
\(\left(p+\frac{a}{V^{2}}\right)(V-b)=R T\)
where, \(p\) is the pressure, \(V\) the volume, \(T\) the absolute temperature and \(a\) and \(b\) are constants. The dimensional formula of \(a\) is

1 \(\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{5} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{-5} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139510 The dimensions of universal gravitational constant are-

1 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{-3} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139513 If the force is given by \(F=a t+b t^{2}\) with \(t\) as time. The dimensions of \(a\) and \(b\) are

1 \(\left[\mathrm{MLT}^{-4}\right]\) and \(\left[\mathrm{MLT}^{-2}\right]\)
2 \(\left[\mathrm{MLT}^{-3}\right]\) and \(\left[\mathrm{MLT}^{-4}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-4}\right]\)
Units and Measurements

139515 The dimension of angular momentum is

1 \(\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]\)
2 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
4 \(\left[\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139516 The speed of light (c), gravitation constant (G), and Plank's constant \((h)\) are taken as the fundamental units in a system. The dimension of time in this new system should be:

1 \(\left[G^{1 / 2} h^{1 / 2} c^{-5 / 2}\right]\)
2 \(\left[G^{-1 / 2} h^{1 / 2} c^{1 / 2}\right]\)
3 \(\left[G^{1 / 2} h^{1 / 2} c^{-3 / 2}\right]\)
4 \(\left[G^{1 / 2} h^{1 / 2} c^{1 / 2}\right]\)
Units and Measurements

139509 The equation of state of some gases can be expressed as
\(\left(p+\frac{a}{V^{2}}\right)(V-b)=R T\)
where, \(p\) is the pressure, \(V\) the volume, \(T\) the absolute temperature and \(a\) and \(b\) are constants. The dimensional formula of \(a\) is

1 \(\left[\mathrm{ML}^{5} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{5} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{-5} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139510 The dimensions of universal gravitational constant are-

1 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{-3} \mathrm{~T}^{-2}\right]\)
2 \(\left[\mathrm{M}^{-2} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139513 If the force is given by \(F=a t+b t^{2}\) with \(t\) as time. The dimensions of \(a\) and \(b\) are

1 \(\left[\mathrm{MLT}^{-4}\right]\) and \(\left[\mathrm{MLT}^{-2}\right]\)
2 \(\left[\mathrm{MLT}^{-3}\right]\) and \(\left[\mathrm{MLT}^{-4}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]\) and \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-4}\right]\)
Units and Measurements

139515 The dimension of angular momentum is

1 \(\left[\mathrm{M}^{0} \mathrm{~L}^{1} \mathrm{~T}^{-1}\right]\)
2 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-1}\right]\)
4 \(\left[\mathrm{M}^{2} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right]\)
Units and Measurements

139516 The speed of light (c), gravitation constant (G), and Plank's constant \((h)\) are taken as the fundamental units in a system. The dimension of time in this new system should be:

1 \(\left[G^{1 / 2} h^{1 / 2} c^{-5 / 2}\right]\)
2 \(\left[G^{-1 / 2} h^{1 / 2} c^{1 / 2}\right]\)
3 \(\left[G^{1 / 2} h^{1 / 2} c^{-3 / 2}\right]\)
4 \(\left[G^{1 / 2} h^{1 / 2} c^{1 / 2}\right]\)