02. Dimensions of Physical Quantities and Its Applications
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Units and Measurements

139500 Dimensions of resistance in an electrical circuit, in terms of dimension of mass \(M\), of length \(L\), of time \(T\) and of current \(I\), would be

1 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-1}\right]\)
2 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{I}^{-1}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}\right]\)
Units and Measurements

139501 If \(M, L, T\), and \(I\) stand for mass, length, time and electric current respectively, the dimensional formula for capacitance is

1 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}^{-4} \mathrm{I}^{2}\right]\)
2 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{I}^{2}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{4} \mathrm{I}^{2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-4} \mathrm{I}^{-2}\right]\)
Units and Measurements

139506 Planck's constant has the dimensions of

1 linear momentum
2 angular momentum
3 energy
4 power
Units and Measurements

139508 The dimension of magnetic flux is

1 \(\left[\mathrm{MLT}^{-1} \mathrm{~A}^{-1}\right]\)
2 \(\left[\mathrm{ML}^{-1} \mathrm{TA}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{-2} \mathrm{~T}^{2} \mathrm{~A}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]\)
Units and Measurements

139500 Dimensions of resistance in an electrical circuit, in terms of dimension of mass \(M\), of length \(L\), of time \(T\) and of current \(I\), would be

1 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-1}\right]\)
2 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{I}^{-1}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}\right]\)
Units and Measurements

139501 If \(M, L, T\), and \(I\) stand for mass, length, time and electric current respectively, the dimensional formula for capacitance is

1 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}^{-4} \mathrm{I}^{2}\right]\)
2 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{I}^{2}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{4} \mathrm{I}^{2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-4} \mathrm{I}^{-2}\right]\)
Units and Measurements

139506 Planck's constant has the dimensions of

1 linear momentum
2 angular momentum
3 energy
4 power
Units and Measurements

139508 The dimension of magnetic flux is

1 \(\left[\mathrm{MLT}^{-1} \mathrm{~A}^{-1}\right]\)
2 \(\left[\mathrm{ML}^{-1} \mathrm{TA}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{-2} \mathrm{~T}^{2} \mathrm{~A}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]\)
Units and Measurements

139500 Dimensions of resistance in an electrical circuit, in terms of dimension of mass \(M\), of length \(L\), of time \(T\) and of current \(I\), would be

1 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-1}\right]\)
2 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{I}^{-1}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}\right]\)
Units and Measurements

139501 If \(M, L, T\), and \(I\) stand for mass, length, time and electric current respectively, the dimensional formula for capacitance is

1 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}^{-4} \mathrm{I}^{2}\right]\)
2 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{I}^{2}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{4} \mathrm{I}^{2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-4} \mathrm{I}^{-2}\right]\)
Units and Measurements

139506 Planck's constant has the dimensions of

1 linear momentum
2 angular momentum
3 energy
4 power
Units and Measurements

139508 The dimension of magnetic flux is

1 \(\left[\mathrm{MLT}^{-1} \mathrm{~A}^{-1}\right]\)
2 \(\left[\mathrm{ML}^{-1} \mathrm{TA}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{-2} \mathrm{~T}^{2} \mathrm{~A}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]\)
Units and Measurements

139500 Dimensions of resistance in an electrical circuit, in terms of dimension of mass \(M\), of length \(L\), of time \(T\) and of current \(I\), would be

1 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-1}\right]\)
2 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-1} \mathrm{I}^{-1}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{I}^{-2}\right]\)
Units and Measurements

139501 If \(M, L, T\), and \(I\) stand for mass, length, time and electric current respectively, the dimensional formula for capacitance is

1 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{2} \mathrm{~T}^{-4} \mathrm{I}^{2}\right]\)
2 \(\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{I}^{2}\right]\)
3 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{4} \mathrm{I}^{2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-4} \mathrm{I}^{-2}\right]\)
Units and Measurements

139506 Planck's constant has the dimensions of

1 linear momentum
2 angular momentum
3 energy
4 power
Units and Measurements

139508 The dimension of magnetic flux is

1 \(\left[\mathrm{MLT}^{-1} \mathrm{~A}^{-1}\right]\)
2 \(\left[\mathrm{ML}^{-1} \mathrm{TA}^{-2}\right]\)
3 \(\left[\mathrm{ML}^{-2} \mathrm{~T}^{2} \mathrm{~A}^{-2}\right]\)
4 \(\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]\)