02. Dimensions of Physical Quantities and Its Applications
Units and Measurements

139490 The physical quantity having the dimensions \(\left[\mathbf{M}^{-1} \mathbf{L}^{-3} \mathbf{T}^{3} \mathbf{A}^{2}\right]\) is

1 resistance
2 resistivity
3 electrical conductivity
4 electromotive force
Units and Measurements

139491 The dimension of \(\frac{a}{b}\) in the equation \(p=\frac{a-t^{2}}{b x}\), where \(p\) is pressure, \(x\) is distance and \(t\) is time is

1 \(\left[\mathrm{LT}^{-3}\right]\)
2 \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{2} \mathrm{LT}^{-3}\right]\)
4 \(\left[\mathrm{MT}^{-2}\right]\)
Units and Measurements

139492 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]\) stand for dimension of

1 work
2 torque
3 linear momentum
4 coefficient of viscosity
Units and Measurements

139493 If \(p\) represents radiation pressure, \(c\) represents speed of light and \(S\) represents radiation energy striking unit area per sec. The non-zero integers \(x, y, z\) such that \(p^{x} \quad S^{y} \quad c^{z}\) is dimensionless are

1 \(\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1\)
2 \(x=-1, y=1, z=1\)
3 \(\mathrm{x}=1, \mathrm{y}=-1, \mathrm{z}=1\)
4 \(x=1, y=1, z=-1\)
Units and Measurements

139494 The dimensional formula for permeability of free space, \(\mu_{0}\) is

1 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]\)
2 \(\left[M L-1 T^{-2} A^{2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2} \mathrm{~A}^{2}\right]\)
4 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-1}\right]\)
Units and Measurements

139490 The physical quantity having the dimensions \(\left[\mathbf{M}^{-1} \mathbf{L}^{-3} \mathbf{T}^{3} \mathbf{A}^{2}\right]\) is

1 resistance
2 resistivity
3 electrical conductivity
4 electromotive force
Units and Measurements

139491 The dimension of \(\frac{a}{b}\) in the equation \(p=\frac{a-t^{2}}{b x}\), where \(p\) is pressure, \(x\) is distance and \(t\) is time is

1 \(\left[\mathrm{LT}^{-3}\right]\)
2 \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{2} \mathrm{LT}^{-3}\right]\)
4 \(\left[\mathrm{MT}^{-2}\right]\)
Units and Measurements

139492 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]\) stand for dimension of

1 work
2 torque
3 linear momentum
4 coefficient of viscosity
Units and Measurements

139493 If \(p\) represents radiation pressure, \(c\) represents speed of light and \(S\) represents radiation energy striking unit area per sec. The non-zero integers \(x, y, z\) such that \(p^{x} \quad S^{y} \quad c^{z}\) is dimensionless are

1 \(\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1\)
2 \(x=-1, y=1, z=1\)
3 \(\mathrm{x}=1, \mathrm{y}=-1, \mathrm{z}=1\)
4 \(x=1, y=1, z=-1\)
Units and Measurements

139494 The dimensional formula for permeability of free space, \(\mu_{0}\) is

1 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]\)
2 \(\left[M L-1 T^{-2} A^{2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2} \mathrm{~A}^{2}\right]\)
4 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-1}\right]\)
Units and Measurements

139490 The physical quantity having the dimensions \(\left[\mathbf{M}^{-1} \mathbf{L}^{-3} \mathbf{T}^{3} \mathbf{A}^{2}\right]\) is

1 resistance
2 resistivity
3 electrical conductivity
4 electromotive force
Units and Measurements

139491 The dimension of \(\frac{a}{b}\) in the equation \(p=\frac{a-t^{2}}{b x}\), where \(p\) is pressure, \(x\) is distance and \(t\) is time is

1 \(\left[\mathrm{LT}^{-3}\right]\)
2 \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{2} \mathrm{LT}^{-3}\right]\)
4 \(\left[\mathrm{MT}^{-2}\right]\)
Units and Measurements

139492 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]\) stand for dimension of

1 work
2 torque
3 linear momentum
4 coefficient of viscosity
Units and Measurements

139493 If \(p\) represents radiation pressure, \(c\) represents speed of light and \(S\) represents radiation energy striking unit area per sec. The non-zero integers \(x, y, z\) such that \(p^{x} \quad S^{y} \quad c^{z}\) is dimensionless are

1 \(\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1\)
2 \(x=-1, y=1, z=1\)
3 \(\mathrm{x}=1, \mathrm{y}=-1, \mathrm{z}=1\)
4 \(x=1, y=1, z=-1\)
Units and Measurements

139494 The dimensional formula for permeability of free space, \(\mu_{0}\) is

1 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]\)
2 \(\left[M L-1 T^{-2} A^{2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2} \mathrm{~A}^{2}\right]\)
4 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-1}\right]\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Units and Measurements

139490 The physical quantity having the dimensions \(\left[\mathbf{M}^{-1} \mathbf{L}^{-3} \mathbf{T}^{3} \mathbf{A}^{2}\right]\) is

1 resistance
2 resistivity
3 electrical conductivity
4 electromotive force
Units and Measurements

139491 The dimension of \(\frac{a}{b}\) in the equation \(p=\frac{a-t^{2}}{b x}\), where \(p\) is pressure, \(x\) is distance and \(t\) is time is

1 \(\left[\mathrm{LT}^{-3}\right]\)
2 \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{2} \mathrm{LT}^{-3}\right]\)
4 \(\left[\mathrm{MT}^{-2}\right]\)
Units and Measurements

139492 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]\) stand for dimension of

1 work
2 torque
3 linear momentum
4 coefficient of viscosity
Units and Measurements

139493 If \(p\) represents radiation pressure, \(c\) represents speed of light and \(S\) represents radiation energy striking unit area per sec. The non-zero integers \(x, y, z\) such that \(p^{x} \quad S^{y} \quad c^{z}\) is dimensionless are

1 \(\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1\)
2 \(x=-1, y=1, z=1\)
3 \(\mathrm{x}=1, \mathrm{y}=-1, \mathrm{z}=1\)
4 \(x=1, y=1, z=-1\)
Units and Measurements

139494 The dimensional formula for permeability of free space, \(\mu_{0}\) is

1 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]\)
2 \(\left[M L-1 T^{-2} A^{2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2} \mathrm{~A}^{2}\right]\)
4 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-1}\right]\)
Units and Measurements

139490 The physical quantity having the dimensions \(\left[\mathbf{M}^{-1} \mathbf{L}^{-3} \mathbf{T}^{3} \mathbf{A}^{2}\right]\) is

1 resistance
2 resistivity
3 electrical conductivity
4 electromotive force
Units and Measurements

139491 The dimension of \(\frac{a}{b}\) in the equation \(p=\frac{a-t^{2}}{b x}\), where \(p\) is pressure, \(x\) is distance and \(t\) is time is

1 \(\left[\mathrm{LT}^{-3}\right]\)
2 \(\left[\mathrm{ML}^{3} \mathrm{~T}^{-1}\right]\)
3 \(\left[\mathrm{M}^{2} \mathrm{LT}^{-3}\right]\)
4 \(\left[\mathrm{MT}^{-2}\right]\)
Units and Measurements

139492 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]\) stand for dimension of

1 work
2 torque
3 linear momentum
4 coefficient of viscosity
Units and Measurements

139493 If \(p\) represents radiation pressure, \(c\) represents speed of light and \(S\) represents radiation energy striking unit area per sec. The non-zero integers \(x, y, z\) such that \(p^{x} \quad S^{y} \quad c^{z}\) is dimensionless are

1 \(\mathrm{x}=1, \mathrm{y}=1, \mathrm{z}=1\)
2 \(x=-1, y=1, z=1\)
3 \(\mathrm{x}=1, \mathrm{y}=-1, \mathrm{z}=1\)
4 \(x=1, y=1, z=-1\)
Units and Measurements

139494 The dimensional formula for permeability of free space, \(\mu_{0}\) is

1 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]\)
2 \(\left[M L-1 T^{-2} A^{2}\right]\)
3 \(\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2} \mathrm{~A}^{2}\right]\)
4 \(\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-1}\right]\)