NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Units and Measurements
139441
Unit of Magnetic Flux is:
1 Tesla
2 Gauss
3 Weber
4 Weber \(/ \mathrm{m}^{2}\)
Explanation:
C The SI unit of magnetic flux is weber (Wb). Weber is commonly expressed in a multitude of other units. \(\mathrm{Wb}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{A}}=\mathrm{V} \cdot \mathrm{s}=\mathrm{H} \cdot \mathrm{A}=\mathrm{T} \cdot \mathrm{m}^{2}=\frac{\mathrm{J}}{\mathrm{A}}=10^{8} \mathrm{mx}\) where, \(\begin{array}{ll} \mathrm{Wb}=\text { Weber } & \mathrm{s}=\text { second } \\ \mathrm{T}=\text { Tesla } & \mathrm{H}=\text { Henry } \\ \mathrm{V}=\text { volt } & \mathrm{A}=\text { Ampere } \\ \mathrm{J}=\text { joule } & \mathrm{Mx}=\text { Maxwell } \end{array}\)
AIIMS-26.05.2019(E) Shift-2
Units and Measurements
139448
\(\quad \operatorname{kg~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}\) is the SI unit of
1 Inductance
2 Resistance
3 Capacitance
4 Magnetic flux
Explanation:
B Given that, \(\mathrm{Kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\) Dimensional formula of given unit is \(=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]\) Resis tance \(=\frac{\text { Voltage }}{\text { Current }}\) \(=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}{[\mathrm{A}]}\) \(=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]\) So, the dimensional formula of given unit is equal to the resistance.
AP EAMCET-25.04.2018
Units and Measurements
139452
The correct unit of thermal conductivity is
D The thermal conductivity of a material is a measure of its ability to conduct heat. Thermal conductivity \((\mathrm{K})=\frac{\mathrm{QL}}{\mathrm{A} \cdot \Delta \mathrm{T}}\) Where, \(Q=\) Heat transfer through the material \(\mathrm{L}=\) Length \(\mathrm{A}=\) Area So, \(\Delta \mathrm{T}=\) Temperature difference The unit of thermal conductivity \(=\frac{\mathrm{Js}^{-1} \times \mathrm{m}}{\mathrm{m}^{2} \times{ }^{\circ} \mathrm{C}}\) \(=\mathrm{Js}^{-1} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}\)
B The SI unit of gravitational constant is \(\mathrm{Nm}^{2} \mathrm{~kg}^{-2}\) We know that, \(\mathrm{F}=\mathrm{G} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}\) The SI unit of \(\mathrm{F} =\mathrm{N} \text { (Newton) }\) \(\mathrm{m}_{1} \text { and } \mathrm{m}_{2} =\mathrm{kg}(\text { kilogram })\) \(\mathrm{r} =\mathrm{m}(\text { meter })\) From the above equation, we have Put the SI units \(\mathrm{G}=\mathrm{F} \cdot \frac{\mathrm{r}^{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}\) \(\Rightarrow \mathrm{G}=\mathrm{N} \frac{(\mathrm{m})^{2}}{(\mathrm{~kg})^{2}} \Rightarrow \mathrm{G}=\mathrm{Nm}^{2} \mathrm{~kg}^{-2}\)
C The SI unit of magnetic flux is weber (Wb). Weber is commonly expressed in a multitude of other units. \(\mathrm{Wb}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{A}}=\mathrm{V} \cdot \mathrm{s}=\mathrm{H} \cdot \mathrm{A}=\mathrm{T} \cdot \mathrm{m}^{2}=\frac{\mathrm{J}}{\mathrm{A}}=10^{8} \mathrm{mx}\) where, \(\begin{array}{ll} \mathrm{Wb}=\text { Weber } & \mathrm{s}=\text { second } \\ \mathrm{T}=\text { Tesla } & \mathrm{H}=\text { Henry } \\ \mathrm{V}=\text { volt } & \mathrm{A}=\text { Ampere } \\ \mathrm{J}=\text { joule } & \mathrm{Mx}=\text { Maxwell } \end{array}\)
AIIMS-26.05.2019(E) Shift-2
Units and Measurements
139448
\(\quad \operatorname{kg~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}\) is the SI unit of
1 Inductance
2 Resistance
3 Capacitance
4 Magnetic flux
Explanation:
B Given that, \(\mathrm{Kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\) Dimensional formula of given unit is \(=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]\) Resis tance \(=\frac{\text { Voltage }}{\text { Current }}\) \(=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}{[\mathrm{A}]}\) \(=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]\) So, the dimensional formula of given unit is equal to the resistance.
AP EAMCET-25.04.2018
Units and Measurements
139452
The correct unit of thermal conductivity is
D The thermal conductivity of a material is a measure of its ability to conduct heat. Thermal conductivity \((\mathrm{K})=\frac{\mathrm{QL}}{\mathrm{A} \cdot \Delta \mathrm{T}}\) Where, \(Q=\) Heat transfer through the material \(\mathrm{L}=\) Length \(\mathrm{A}=\) Area So, \(\Delta \mathrm{T}=\) Temperature difference The unit of thermal conductivity \(=\frac{\mathrm{Js}^{-1} \times \mathrm{m}}{\mathrm{m}^{2} \times{ }^{\circ} \mathrm{C}}\) \(=\mathrm{Js}^{-1} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}\)
B The SI unit of gravitational constant is \(\mathrm{Nm}^{2} \mathrm{~kg}^{-2}\) We know that, \(\mathrm{F}=\mathrm{G} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}\) The SI unit of \(\mathrm{F} =\mathrm{N} \text { (Newton) }\) \(\mathrm{m}_{1} \text { and } \mathrm{m}_{2} =\mathrm{kg}(\text { kilogram })\) \(\mathrm{r} =\mathrm{m}(\text { meter })\) From the above equation, we have Put the SI units \(\mathrm{G}=\mathrm{F} \cdot \frac{\mathrm{r}^{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}\) \(\Rightarrow \mathrm{G}=\mathrm{N} \frac{(\mathrm{m})^{2}}{(\mathrm{~kg})^{2}} \Rightarrow \mathrm{G}=\mathrm{Nm}^{2} \mathrm{~kg}^{-2}\)
C The SI unit of magnetic flux is weber (Wb). Weber is commonly expressed in a multitude of other units. \(\mathrm{Wb}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{A}}=\mathrm{V} \cdot \mathrm{s}=\mathrm{H} \cdot \mathrm{A}=\mathrm{T} \cdot \mathrm{m}^{2}=\frac{\mathrm{J}}{\mathrm{A}}=10^{8} \mathrm{mx}\) where, \(\begin{array}{ll} \mathrm{Wb}=\text { Weber } & \mathrm{s}=\text { second } \\ \mathrm{T}=\text { Tesla } & \mathrm{H}=\text { Henry } \\ \mathrm{V}=\text { volt } & \mathrm{A}=\text { Ampere } \\ \mathrm{J}=\text { joule } & \mathrm{Mx}=\text { Maxwell } \end{array}\)
AIIMS-26.05.2019(E) Shift-2
Units and Measurements
139448
\(\quad \operatorname{kg~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}\) is the SI unit of
1 Inductance
2 Resistance
3 Capacitance
4 Magnetic flux
Explanation:
B Given that, \(\mathrm{Kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\) Dimensional formula of given unit is \(=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]\) Resis tance \(=\frac{\text { Voltage }}{\text { Current }}\) \(=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}{[\mathrm{A}]}\) \(=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]\) So, the dimensional formula of given unit is equal to the resistance.
AP EAMCET-25.04.2018
Units and Measurements
139452
The correct unit of thermal conductivity is
D The thermal conductivity of a material is a measure of its ability to conduct heat. Thermal conductivity \((\mathrm{K})=\frac{\mathrm{QL}}{\mathrm{A} \cdot \Delta \mathrm{T}}\) Where, \(Q=\) Heat transfer through the material \(\mathrm{L}=\) Length \(\mathrm{A}=\) Area So, \(\Delta \mathrm{T}=\) Temperature difference The unit of thermal conductivity \(=\frac{\mathrm{Js}^{-1} \times \mathrm{m}}{\mathrm{m}^{2} \times{ }^{\circ} \mathrm{C}}\) \(=\mathrm{Js}^{-1} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}\)
B The SI unit of gravitational constant is \(\mathrm{Nm}^{2} \mathrm{~kg}^{-2}\) We know that, \(\mathrm{F}=\mathrm{G} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}\) The SI unit of \(\mathrm{F} =\mathrm{N} \text { (Newton) }\) \(\mathrm{m}_{1} \text { and } \mathrm{m}_{2} =\mathrm{kg}(\text { kilogram })\) \(\mathrm{r} =\mathrm{m}(\text { meter })\) From the above equation, we have Put the SI units \(\mathrm{G}=\mathrm{F} \cdot \frac{\mathrm{r}^{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}\) \(\Rightarrow \mathrm{G}=\mathrm{N} \frac{(\mathrm{m})^{2}}{(\mathrm{~kg})^{2}} \Rightarrow \mathrm{G}=\mathrm{Nm}^{2} \mathrm{~kg}^{-2}\)
C The SI unit of magnetic flux is weber (Wb). Weber is commonly expressed in a multitude of other units. \(\mathrm{Wb}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2} \cdot \mathrm{A}}=\mathrm{V} \cdot \mathrm{s}=\mathrm{H} \cdot \mathrm{A}=\mathrm{T} \cdot \mathrm{m}^{2}=\frac{\mathrm{J}}{\mathrm{A}}=10^{8} \mathrm{mx}\) where, \(\begin{array}{ll} \mathrm{Wb}=\text { Weber } & \mathrm{s}=\text { second } \\ \mathrm{T}=\text { Tesla } & \mathrm{H}=\text { Henry } \\ \mathrm{V}=\text { volt } & \mathrm{A}=\text { Ampere } \\ \mathrm{J}=\text { joule } & \mathrm{Mx}=\text { Maxwell } \end{array}\)
AIIMS-26.05.2019(E) Shift-2
Units and Measurements
139448
\(\quad \operatorname{kg~m}^{2} \mathrm{~s}^{-3} \mathrm{~A}^{-2}\) is the SI unit of
1 Inductance
2 Resistance
3 Capacitance
4 Magnetic flux
Explanation:
B Given that, \(\mathrm{Kg} \mathrm{m}^{2} \mathrm{~s}^{-2}\) Dimensional formula of given unit is \(=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]\) Resis tance \(=\frac{\text { Voltage }}{\text { Current }}\) \(=\frac{\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]}{[\mathrm{A}]}\) \(=\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-3} \mathrm{~A}^{-2}\right]\) So, the dimensional formula of given unit is equal to the resistance.
AP EAMCET-25.04.2018
Units and Measurements
139452
The correct unit of thermal conductivity is
D The thermal conductivity of a material is a measure of its ability to conduct heat. Thermal conductivity \((\mathrm{K})=\frac{\mathrm{QL}}{\mathrm{A} \cdot \Delta \mathrm{T}}\) Where, \(Q=\) Heat transfer through the material \(\mathrm{L}=\) Length \(\mathrm{A}=\) Area So, \(\Delta \mathrm{T}=\) Temperature difference The unit of thermal conductivity \(=\frac{\mathrm{Js}^{-1} \times \mathrm{m}}{\mathrm{m}^{2} \times{ }^{\circ} \mathrm{C}}\) \(=\mathrm{Js}^{-1} \mathrm{~m}^{-1 \circ} \mathrm{C}^{-1}\)
B The SI unit of gravitational constant is \(\mathrm{Nm}^{2} \mathrm{~kg}^{-2}\) We know that, \(\mathrm{F}=\mathrm{G} \frac{\mathrm{m}_{1} \mathrm{~m}_{2}}{\mathrm{r}^{2}}\) The SI unit of \(\mathrm{F} =\mathrm{N} \text { (Newton) }\) \(\mathrm{m}_{1} \text { and } \mathrm{m}_{2} =\mathrm{kg}(\text { kilogram })\) \(\mathrm{r} =\mathrm{m}(\text { meter })\) From the above equation, we have Put the SI units \(\mathrm{G}=\mathrm{F} \cdot \frac{\mathrm{r}^{2}}{\mathrm{~m}_{1} \mathrm{~m}_{2}}\) \(\Rightarrow \mathrm{G}=\mathrm{N} \frac{(\mathrm{m})^{2}}{(\mathrm{~kg})^{2}} \Rightarrow \mathrm{G}=\mathrm{Nm}^{2} \mathrm{~kg}^{-2}\)