04. Spectrochemical Series, Complex Stability
COORDINATION COMPOUNDS

274288 Consider that a $\mathrm{d}^{6}$ metal ion $\left[\mathrm{M}^{2+}\right]$ forms a complex with aqua ligands and the spin only magnetic moment of the complex is 4.90 BM. The geometry and the crystal field stabilisation energy of the complex is

1 tetrahedral and $-1.6 \Delta_{\mathrm{t}}+1 \mathrm{P}$
2 octahedral and $-2.4 \Delta_{0}+2 \mathrm{P}$
3 octahedral and $-1.6 \Delta_{0}$
4 tetrahedral and $-0.6 \Delta_{\mathrm{t}}$
COORDINATION COMPOUNDS

274289 The electronic spectrum of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ shows a single broad peak with a maximum at 20,300 cm-1. The crystal field stabilization energy (CFSE) of the complex ion, in $\mathrm{kJ} \mathrm{mol}^{-1}$, is

1 145.5
2 242.5
3 83.7
4 97
COORDINATION COMPOUNDS

274290 The d-electron configuration of $\left[\mathrm{Ru}(\mathrm{en})_{3}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$, respectively are

1 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
2 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
3 $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
4 $t_{2 g}^{4} e_{g}^{2}$ and $t_{2 g}^{4} e_{g}^{2}$
COORDINATION COMPOUNDS

274295 The complex that has highest crystal field splitting energy $(\Delta)$, is

1 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$
3 $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
4 $\mathrm{K}_{2}\left(\mathrm{CoCl}_{4}\right)$
COORDINATION COMPOUNDS

274296 The crystal field stabilization energy (CFSE) of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ and $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]$, respectively, are

1 $-0.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
2 $-0.4 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$
3 $-2.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
4 $-0.6 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$
COORDINATION COMPOUNDS

274288 Consider that a $\mathrm{d}^{6}$ metal ion $\left[\mathrm{M}^{2+}\right]$ forms a complex with aqua ligands and the spin only magnetic moment of the complex is 4.90 BM. The geometry and the crystal field stabilisation energy of the complex is

1 tetrahedral and $-1.6 \Delta_{\mathrm{t}}+1 \mathrm{P}$
2 octahedral and $-2.4 \Delta_{0}+2 \mathrm{P}$
3 octahedral and $-1.6 \Delta_{0}$
4 tetrahedral and $-0.6 \Delta_{\mathrm{t}}$
COORDINATION COMPOUNDS

274289 The electronic spectrum of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ shows a single broad peak with a maximum at 20,300 cm-1. The crystal field stabilization energy (CFSE) of the complex ion, in $\mathrm{kJ} \mathrm{mol}^{-1}$, is

1 145.5
2 242.5
3 83.7
4 97
COORDINATION COMPOUNDS

274290 The d-electron configuration of $\left[\mathrm{Ru}(\mathrm{en})_{3}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$, respectively are

1 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
2 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
3 $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
4 $t_{2 g}^{4} e_{g}^{2}$ and $t_{2 g}^{4} e_{g}^{2}$
COORDINATION COMPOUNDS

274295 The complex that has highest crystal field splitting energy $(\Delta)$, is

1 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$
3 $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
4 $\mathrm{K}_{2}\left(\mathrm{CoCl}_{4}\right)$
COORDINATION COMPOUNDS

274296 The crystal field stabilization energy (CFSE) of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ and $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]$, respectively, are

1 $-0.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
2 $-0.4 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$
3 $-2.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
4 $-0.6 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
COORDINATION COMPOUNDS

274288 Consider that a $\mathrm{d}^{6}$ metal ion $\left[\mathrm{M}^{2+}\right]$ forms a complex with aqua ligands and the spin only magnetic moment of the complex is 4.90 BM. The geometry and the crystal field stabilisation energy of the complex is

1 tetrahedral and $-1.6 \Delta_{\mathrm{t}}+1 \mathrm{P}$
2 octahedral and $-2.4 \Delta_{0}+2 \mathrm{P}$
3 octahedral and $-1.6 \Delta_{0}$
4 tetrahedral and $-0.6 \Delta_{\mathrm{t}}$
COORDINATION COMPOUNDS

274289 The electronic spectrum of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ shows a single broad peak with a maximum at 20,300 cm-1. The crystal field stabilization energy (CFSE) of the complex ion, in $\mathrm{kJ} \mathrm{mol}^{-1}$, is

1 145.5
2 242.5
3 83.7
4 97
COORDINATION COMPOUNDS

274290 The d-electron configuration of $\left[\mathrm{Ru}(\mathrm{en})_{3}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$, respectively are

1 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
2 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
3 $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
4 $t_{2 g}^{4} e_{g}^{2}$ and $t_{2 g}^{4} e_{g}^{2}$
COORDINATION COMPOUNDS

274295 The complex that has highest crystal field splitting energy $(\Delta)$, is

1 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$
3 $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
4 $\mathrm{K}_{2}\left(\mathrm{CoCl}_{4}\right)$
COORDINATION COMPOUNDS

274296 The crystal field stabilization energy (CFSE) of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ and $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]$, respectively, are

1 $-0.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
2 $-0.4 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$
3 $-2.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
4 $-0.6 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$
COORDINATION COMPOUNDS

274288 Consider that a $\mathrm{d}^{6}$ metal ion $\left[\mathrm{M}^{2+}\right]$ forms a complex with aqua ligands and the spin only magnetic moment of the complex is 4.90 BM. The geometry and the crystal field stabilisation energy of the complex is

1 tetrahedral and $-1.6 \Delta_{\mathrm{t}}+1 \mathrm{P}$
2 octahedral and $-2.4 \Delta_{0}+2 \mathrm{P}$
3 octahedral and $-1.6 \Delta_{0}$
4 tetrahedral and $-0.6 \Delta_{\mathrm{t}}$
COORDINATION COMPOUNDS

274289 The electronic spectrum of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ shows a single broad peak with a maximum at 20,300 cm-1. The crystal field stabilization energy (CFSE) of the complex ion, in $\mathrm{kJ} \mathrm{mol}^{-1}$, is

1 145.5
2 242.5
3 83.7
4 97
COORDINATION COMPOUNDS

274290 The d-electron configuration of $\left[\mathrm{Ru}(\mathrm{en})_{3}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$, respectively are

1 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
2 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
3 $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
4 $t_{2 g}^{4} e_{g}^{2}$ and $t_{2 g}^{4} e_{g}^{2}$
COORDINATION COMPOUNDS

274295 The complex that has highest crystal field splitting energy $(\Delta)$, is

1 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$
3 $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
4 $\mathrm{K}_{2}\left(\mathrm{CoCl}_{4}\right)$
COORDINATION COMPOUNDS

274296 The crystal field stabilization energy (CFSE) of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ and $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]$, respectively, are

1 $-0.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
2 $-0.4 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$
3 $-2.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
4 $-0.6 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$
COORDINATION COMPOUNDS

274288 Consider that a $\mathrm{d}^{6}$ metal ion $\left[\mathrm{M}^{2+}\right]$ forms a complex with aqua ligands and the spin only magnetic moment of the complex is 4.90 BM. The geometry and the crystal field stabilisation energy of the complex is

1 tetrahedral and $-1.6 \Delta_{\mathrm{t}}+1 \mathrm{P}$
2 octahedral and $-2.4 \Delta_{0}+2 \mathrm{P}$
3 octahedral and $-1.6 \Delta_{0}$
4 tetrahedral and $-0.6 \Delta_{\mathrm{t}}$
COORDINATION COMPOUNDS

274289 The electronic spectrum of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ shows a single broad peak with a maximum at 20,300 cm-1. The crystal field stabilization energy (CFSE) of the complex ion, in $\mathrm{kJ} \mathrm{mol}^{-1}$, is

1 145.5
2 242.5
3 83.7
4 97
COORDINATION COMPOUNDS

274290 The d-electron configuration of $\left[\mathrm{Ru}(\mathrm{en})_{3}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$, respectively are

1 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
2 $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$ and $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
3 $\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$ and $\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
4 $t_{2 g}^{4} e_{g}^{2}$ and $t_{2 g}^{4} e_{g}^{2}$
COORDINATION COMPOUNDS

274295 The complex that has highest crystal field splitting energy $(\Delta)$, is

1 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}_{3}$
3 $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$
4 $\mathrm{K}_{2}\left(\mathrm{CoCl}_{4}\right)$
COORDINATION COMPOUNDS

274296 The crystal field stabilization energy (CFSE) of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ and $\mathrm{K}_{2}\left[\mathrm{Ni}(\mathrm{Cl})_{4}\right]$, respectively, are

1 $-0.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
2 $-0.4 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$
3 $-2.4 \Delta_{0} \text { and }-1.2 \Delta_{\mathrm{t}}$
4 $-0.6 \Delta_{0} \text { and }-0.8 \Delta_{\mathrm{t}}$