04. Spectrochemical Series, Complex Stability
COORDINATION COMPOUNDS

274271 Which of the following carbonyls will have the strongest $\mathrm{C}-\mathrm{O}$ bond?

1 $\mathrm{Mn}(\mathrm{CO})_{6}^{+}$
2 $\mathrm{Cr}(\mathrm{CO})_{6}$
3 $\mathrm{V}(\mathrm{CO})_{6}^{-}$
4 $\mathrm{Fe}(\mathrm{CO})_{5}$
COORDINATION COMPOUNDS

274275 According to crystal field theory, when ligands approach the metal atom or ion in an octahedral field, the d orbits that undergo increase in energy are

1 $\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{z}^{2}}$
2 $\mathrm{d}_{\mathrm{yz}}, \mathrm{d}_{\mathrm{z}^{2}}$
3 $\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}, \mathrm{~d}_{\mathrm{z}^{2}}$
4 $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$
COORDINATION COMPOUNDS

274281 The correct order for wavelengths of light absorbed in the complex ions $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+}$ is

1 $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
3 $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
4 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
COORDINATION COMPOUNDS

274283 Accordingly to the crystal field theory, for an octahedral field, the energy of two $e_{g}$ ordinals will be increased by

1 $\left(\frac{1}{5}\right) \Delta_{0}$
2 $\left(\frac{2}{5}\right) \Delta_{0}$
3 $\left(\frac{3}{5}\right) \Delta_{0}$
4 $\left(\frac{4}{5}\right) \Delta_{0}$
COORDINATION COMPOUNDS

274291 The theory that can completely/properly explain the nature of bonding in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is:

1 Werner's theory
2 Crystal field theory
3 Valence bond theory
4 Molecular orbital theory
COORDINATION COMPOUNDS

274271 Which of the following carbonyls will have the strongest $\mathrm{C}-\mathrm{O}$ bond?

1 $\mathrm{Mn}(\mathrm{CO})_{6}^{+}$
2 $\mathrm{Cr}(\mathrm{CO})_{6}$
3 $\mathrm{V}(\mathrm{CO})_{6}^{-}$
4 $\mathrm{Fe}(\mathrm{CO})_{5}$
COORDINATION COMPOUNDS

274275 According to crystal field theory, when ligands approach the metal atom or ion in an octahedral field, the d orbits that undergo increase in energy are

1 $\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{z}^{2}}$
2 $\mathrm{d}_{\mathrm{yz}}, \mathrm{d}_{\mathrm{z}^{2}}$
3 $\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}, \mathrm{~d}_{\mathrm{z}^{2}}$
4 $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$
COORDINATION COMPOUNDS

274281 The correct order for wavelengths of light absorbed in the complex ions $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+}$ is

1 $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
3 $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
4 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
COORDINATION COMPOUNDS

274283 Accordingly to the crystal field theory, for an octahedral field, the energy of two $e_{g}$ ordinals will be increased by

1 $\left(\frac{1}{5}\right) \Delta_{0}$
2 $\left(\frac{2}{5}\right) \Delta_{0}$
3 $\left(\frac{3}{5}\right) \Delta_{0}$
4 $\left(\frac{4}{5}\right) \Delta_{0}$
COORDINATION COMPOUNDS

274291 The theory that can completely/properly explain the nature of bonding in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is:

1 Werner's theory
2 Crystal field theory
3 Valence bond theory
4 Molecular orbital theory
COORDINATION COMPOUNDS

274271 Which of the following carbonyls will have the strongest $\mathrm{C}-\mathrm{O}$ bond?

1 $\mathrm{Mn}(\mathrm{CO})_{6}^{+}$
2 $\mathrm{Cr}(\mathrm{CO})_{6}$
3 $\mathrm{V}(\mathrm{CO})_{6}^{-}$
4 $\mathrm{Fe}(\mathrm{CO})_{5}$
COORDINATION COMPOUNDS

274275 According to crystal field theory, when ligands approach the metal atom or ion in an octahedral field, the d orbits that undergo increase in energy are

1 $\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{z}^{2}}$
2 $\mathrm{d}_{\mathrm{yz}}, \mathrm{d}_{\mathrm{z}^{2}}$
3 $\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}, \mathrm{~d}_{\mathrm{z}^{2}}$
4 $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$
COORDINATION COMPOUNDS

274281 The correct order for wavelengths of light absorbed in the complex ions $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+}$ is

1 $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
3 $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
4 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
COORDINATION COMPOUNDS

274283 Accordingly to the crystal field theory, for an octahedral field, the energy of two $e_{g}$ ordinals will be increased by

1 $\left(\frac{1}{5}\right) \Delta_{0}$
2 $\left(\frac{2}{5}\right) \Delta_{0}$
3 $\left(\frac{3}{5}\right) \Delta_{0}$
4 $\left(\frac{4}{5}\right) \Delta_{0}$
COORDINATION COMPOUNDS

274291 The theory that can completely/properly explain the nature of bonding in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is:

1 Werner's theory
2 Crystal field theory
3 Valence bond theory
4 Molecular orbital theory
COORDINATION COMPOUNDS

274271 Which of the following carbonyls will have the strongest $\mathrm{C}-\mathrm{O}$ bond?

1 $\mathrm{Mn}(\mathrm{CO})_{6}^{+}$
2 $\mathrm{Cr}(\mathrm{CO})_{6}$
3 $\mathrm{V}(\mathrm{CO})_{6}^{-}$
4 $\mathrm{Fe}(\mathrm{CO})_{5}$
COORDINATION COMPOUNDS

274275 According to crystal field theory, when ligands approach the metal atom or ion in an octahedral field, the d orbits that undergo increase in energy are

1 $\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{z}^{2}}$
2 $\mathrm{d}_{\mathrm{yz}}, \mathrm{d}_{\mathrm{z}^{2}}$
3 $\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}, \mathrm{~d}_{\mathrm{z}^{2}}$
4 $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$
COORDINATION COMPOUNDS

274281 The correct order for wavelengths of light absorbed in the complex ions $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+}$ is

1 $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
3 $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
4 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
COORDINATION COMPOUNDS

274283 Accordingly to the crystal field theory, for an octahedral field, the energy of two $e_{g}$ ordinals will be increased by

1 $\left(\frac{1}{5}\right) \Delta_{0}$
2 $\left(\frac{2}{5}\right) \Delta_{0}$
3 $\left(\frac{3}{5}\right) \Delta_{0}$
4 $\left(\frac{4}{5}\right) \Delta_{0}$
COORDINATION COMPOUNDS

274291 The theory that can completely/properly explain the nature of bonding in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is:

1 Werner's theory
2 Crystal field theory
3 Valence bond theory
4 Molecular orbital theory
COORDINATION COMPOUNDS

274271 Which of the following carbonyls will have the strongest $\mathrm{C}-\mathrm{O}$ bond?

1 $\mathrm{Mn}(\mathrm{CO})_{6}^{+}$
2 $\mathrm{Cr}(\mathrm{CO})_{6}$
3 $\mathrm{V}(\mathrm{CO})_{6}^{-}$
4 $\mathrm{Fe}(\mathrm{CO})_{5}$
COORDINATION COMPOUNDS

274275 According to crystal field theory, when ligands approach the metal atom or ion in an octahedral field, the d orbits that undergo increase in energy are

1 $\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{z}^{2}}$
2 $\mathrm{d}_{\mathrm{yz}}, \mathrm{d}_{\mathrm{z}^{2}}$
3 $\mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}, \mathrm{~d}_{\mathrm{z}^{2}}$
4 $\mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{x}^{2}-\mathrm{y}^{2}}$
COORDINATION COMPOUNDS

274281 The correct order for wavelengths of light absorbed in the complex ions $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$, $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3+}$ is

1 $\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
2 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}$
3 $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
4 $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}>\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+}>\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$
COORDINATION COMPOUNDS

274283 Accordingly to the crystal field theory, for an octahedral field, the energy of two $e_{g}$ ordinals will be increased by

1 $\left(\frac{1}{5}\right) \Delta_{0}$
2 $\left(\frac{2}{5}\right) \Delta_{0}$
3 $\left(\frac{3}{5}\right) \Delta_{0}$
4 $\left(\frac{4}{5}\right) \Delta_{0}$
COORDINATION COMPOUNDS

274291 The theory that can completely/properly explain the nature of bonding in $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is:

1 Werner's theory
2 Crystal field theory
3 Valence bond theory
4 Molecular orbital theory