NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
COORDINATION COMPOUNDS
274247
In the silver plating of copper, $\operatorname{K}\left[\operatorname{Ag}(\mathrm{CN})_{2}\right]$ is used instead of $\mathrm{AgNO}_{3}$. The reasion is
1 a thin layer of $\mathrm{Ag}$ is formed on $\mathrm{Cu}$
2 more voltage is required
3 $\mathrm{Ag}^{+}$ions are completely removed from solution
4 less availability of $\mathrm{Ag}^{+}$ions, as $\mathrm{Cu}$ cannot displace $\mathrm{Ag}$ from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$ion
Explanation:
(D) : In the silver plating of copper $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ is used because $\mathrm{Ag}$ is present inside the coordination sphere due to which rate of dissociation is slow and $\mathrm{Cu}$ cannot displace $\mathrm{Ag}$ from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$ion. While in case of $\mathrm{AgNO}_{3}$ compound rate of dissociation is faster because it is ionic compound due to which $\mathrm{Cu}$ easily displace $\mathrm{Ag}$ from $\mathrm{AgNO}_{3}$. Hence, $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ is used for silver plating of copper.
BCECE-2012
COORDINATION COMPOUNDS
274263
Which of the following is a negatively charged bidentate ligand?
1 Cyano
2 Ethylene diamine
3 Acetato
4 Dimethyl glyoximato
Explanation:
(D) : Dimethyl glyoximato is a negatively charged bidentate ligand.
Karnataka-CET-2012
COORDINATION COMPOUNDS
274267
An example of ambidentate ligand is
1 ammine
2 aquo
3 chloro
4 oxalato
5 Thiocyanato
Explanation:
(E) : Those ligands which has two donor atom but at a time only are donor atom is attached to control metal this is called ambidentate ligand. In thiocyanato two donor atom are $\mathrm{S}$ and $\mathrm{N}$.
Kerala-CEE-2010
COORDINATION COMPOUNDS
274269
Both $\mathrm{Co}^{3+}$ and $\mathrm{Pt}^{4+}$ have a coordination number of six. Which of the following pairs of complexes will show approximately the same electrical conductance for their $0.001 \mathrm{M}$ aqueous solutions?
1 $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 4 \mathrm{NH}_{3}$
2 $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}$
3 $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} .5 \mathrm{NH}_{3}$
4 $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 3 \mathrm{NH}_{3}$
5 $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 6 \mathrm{NH}_{3}$
Explanation:
(C) : If complexes contains same electrical conductance when the number of ions formed during ionisation is same. $\mathrm{CoCl}_{3} 6 \mathrm{NH}_{3}$ forms $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ complex and $\mathrm{PtCl}_{4}$. $5 \mathrm{NH}_{3}$ forms $\left[\mathrm{pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{3}$ complex has equal number of ions on ionisation $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$ $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \cdot \mathrm{Cl}_{3} \longrightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{3+}+3 \mathrm{Cl}^{-}$
274247
In the silver plating of copper, $\operatorname{K}\left[\operatorname{Ag}(\mathrm{CN})_{2}\right]$ is used instead of $\mathrm{AgNO}_{3}$. The reasion is
1 a thin layer of $\mathrm{Ag}$ is formed on $\mathrm{Cu}$
2 more voltage is required
3 $\mathrm{Ag}^{+}$ions are completely removed from solution
4 less availability of $\mathrm{Ag}^{+}$ions, as $\mathrm{Cu}$ cannot displace $\mathrm{Ag}$ from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$ion
Explanation:
(D) : In the silver plating of copper $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ is used because $\mathrm{Ag}$ is present inside the coordination sphere due to which rate of dissociation is slow and $\mathrm{Cu}$ cannot displace $\mathrm{Ag}$ from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$ion. While in case of $\mathrm{AgNO}_{3}$ compound rate of dissociation is faster because it is ionic compound due to which $\mathrm{Cu}$ easily displace $\mathrm{Ag}$ from $\mathrm{AgNO}_{3}$. Hence, $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ is used for silver plating of copper.
BCECE-2012
COORDINATION COMPOUNDS
274263
Which of the following is a negatively charged bidentate ligand?
1 Cyano
2 Ethylene diamine
3 Acetato
4 Dimethyl glyoximato
Explanation:
(D) : Dimethyl glyoximato is a negatively charged bidentate ligand.
Karnataka-CET-2012
COORDINATION COMPOUNDS
274267
An example of ambidentate ligand is
1 ammine
2 aquo
3 chloro
4 oxalato
5 Thiocyanato
Explanation:
(E) : Those ligands which has two donor atom but at a time only are donor atom is attached to control metal this is called ambidentate ligand. In thiocyanato two donor atom are $\mathrm{S}$ and $\mathrm{N}$.
Kerala-CEE-2010
COORDINATION COMPOUNDS
274269
Both $\mathrm{Co}^{3+}$ and $\mathrm{Pt}^{4+}$ have a coordination number of six. Which of the following pairs of complexes will show approximately the same electrical conductance for their $0.001 \mathrm{M}$ aqueous solutions?
1 $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 4 \mathrm{NH}_{3}$
2 $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}$
3 $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} .5 \mathrm{NH}_{3}$
4 $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 3 \mathrm{NH}_{3}$
5 $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 6 \mathrm{NH}_{3}$
Explanation:
(C) : If complexes contains same electrical conductance when the number of ions formed during ionisation is same. $\mathrm{CoCl}_{3} 6 \mathrm{NH}_{3}$ forms $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ complex and $\mathrm{PtCl}_{4}$. $5 \mathrm{NH}_{3}$ forms $\left[\mathrm{pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{3}$ complex has equal number of ions on ionisation $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$ $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \cdot \mathrm{Cl}_{3} \longrightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{3+}+3 \mathrm{Cl}^{-}$
274247
In the silver plating of copper, $\operatorname{K}\left[\operatorname{Ag}(\mathrm{CN})_{2}\right]$ is used instead of $\mathrm{AgNO}_{3}$. The reasion is
1 a thin layer of $\mathrm{Ag}$ is formed on $\mathrm{Cu}$
2 more voltage is required
3 $\mathrm{Ag}^{+}$ions are completely removed from solution
4 less availability of $\mathrm{Ag}^{+}$ions, as $\mathrm{Cu}$ cannot displace $\mathrm{Ag}$ from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$ion
Explanation:
(D) : In the silver plating of copper $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ is used because $\mathrm{Ag}$ is present inside the coordination sphere due to which rate of dissociation is slow and $\mathrm{Cu}$ cannot displace $\mathrm{Ag}$ from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$ion. While in case of $\mathrm{AgNO}_{3}$ compound rate of dissociation is faster because it is ionic compound due to which $\mathrm{Cu}$ easily displace $\mathrm{Ag}$ from $\mathrm{AgNO}_{3}$. Hence, $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ is used for silver plating of copper.
BCECE-2012
COORDINATION COMPOUNDS
274263
Which of the following is a negatively charged bidentate ligand?
1 Cyano
2 Ethylene diamine
3 Acetato
4 Dimethyl glyoximato
Explanation:
(D) : Dimethyl glyoximato is a negatively charged bidentate ligand.
Karnataka-CET-2012
COORDINATION COMPOUNDS
274267
An example of ambidentate ligand is
1 ammine
2 aquo
3 chloro
4 oxalato
5 Thiocyanato
Explanation:
(E) : Those ligands which has two donor atom but at a time only are donor atom is attached to control metal this is called ambidentate ligand. In thiocyanato two donor atom are $\mathrm{S}$ and $\mathrm{N}$.
Kerala-CEE-2010
COORDINATION COMPOUNDS
274269
Both $\mathrm{Co}^{3+}$ and $\mathrm{Pt}^{4+}$ have a coordination number of six. Which of the following pairs of complexes will show approximately the same electrical conductance for their $0.001 \mathrm{M}$ aqueous solutions?
1 $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 4 \mathrm{NH}_{3}$
2 $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}$
3 $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} .5 \mathrm{NH}_{3}$
4 $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 3 \mathrm{NH}_{3}$
5 $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 6 \mathrm{NH}_{3}$
Explanation:
(C) : If complexes contains same electrical conductance when the number of ions formed during ionisation is same. $\mathrm{CoCl}_{3} 6 \mathrm{NH}_{3}$ forms $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ complex and $\mathrm{PtCl}_{4}$. $5 \mathrm{NH}_{3}$ forms $\left[\mathrm{pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{3}$ complex has equal number of ions on ionisation $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$ $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \cdot \mathrm{Cl}_{3} \longrightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{3+}+3 \mathrm{Cl}^{-}$
274247
In the silver plating of copper, $\operatorname{K}\left[\operatorname{Ag}(\mathrm{CN})_{2}\right]$ is used instead of $\mathrm{AgNO}_{3}$. The reasion is
1 a thin layer of $\mathrm{Ag}$ is formed on $\mathrm{Cu}$
2 more voltage is required
3 $\mathrm{Ag}^{+}$ions are completely removed from solution
4 less availability of $\mathrm{Ag}^{+}$ions, as $\mathrm{Cu}$ cannot displace $\mathrm{Ag}$ from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$ion
Explanation:
(D) : In the silver plating of copper $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ is used because $\mathrm{Ag}$ is present inside the coordination sphere due to which rate of dissociation is slow and $\mathrm{Cu}$ cannot displace $\mathrm{Ag}$ from $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$ion. While in case of $\mathrm{AgNO}_{3}$ compound rate of dissociation is faster because it is ionic compound due to which $\mathrm{Cu}$ easily displace $\mathrm{Ag}$ from $\mathrm{AgNO}_{3}$. Hence, $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ is used for silver plating of copper.
BCECE-2012
COORDINATION COMPOUNDS
274263
Which of the following is a negatively charged bidentate ligand?
1 Cyano
2 Ethylene diamine
3 Acetato
4 Dimethyl glyoximato
Explanation:
(D) : Dimethyl glyoximato is a negatively charged bidentate ligand.
Karnataka-CET-2012
COORDINATION COMPOUNDS
274267
An example of ambidentate ligand is
1 ammine
2 aquo
3 chloro
4 oxalato
5 Thiocyanato
Explanation:
(E) : Those ligands which has two donor atom but at a time only are donor atom is attached to control metal this is called ambidentate ligand. In thiocyanato two donor atom are $\mathrm{S}$ and $\mathrm{N}$.
Kerala-CEE-2010
COORDINATION COMPOUNDS
274269
Both $\mathrm{Co}^{3+}$ and $\mathrm{Pt}^{4+}$ have a coordination number of six. Which of the following pairs of complexes will show approximately the same electrical conductance for their $0.001 \mathrm{M}$ aqueous solutions?
1 $\mathrm{CoCl}_{3} \cdot 4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 4 \mathrm{NH}_{3}$
2 $\mathrm{CoCl}_{3} \cdot 3 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 5 \mathrm{NH}_{3}$
3 $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} .5 \mathrm{NH}_{3}$
4 $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 3 \mathrm{NH}_{3}$
5 $\mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$ and $\mathrm{PtCl}_{4} \cdot 6 \mathrm{NH}_{3}$
Explanation:
(C) : If complexes contains same electrical conductance when the number of ions formed during ionisation is same. $\mathrm{CoCl}_{3} 6 \mathrm{NH}_{3}$ forms $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}$ complex and $\mathrm{PtCl}_{4}$. $5 \mathrm{NH}_{3}$ forms $\left[\mathrm{pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{3}$ complex has equal number of ions on ionisation $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}+3 \mathrm{Cl}^{-}$ $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \cdot \mathrm{Cl}_{3} \longrightarrow\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{3+}+3 \mathrm{Cl}^{-}$