274210
Which of the following can be reduced easily?
1 $\mathrm{V}(\mathrm{CO})_{6}$
2 $\mathrm{Mo}(\mathrm{CO})_{6}$
3 $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
4 $\mathrm{Fe}(\mathrm{CO})_{5}$
Explanation:
(A) : If complex follows $18 \mathrm{e}^{-}$rule than it is stable. $\mathrm{V}(\mathrm{CO})_{6} \Rightarrow$ One $\mathrm{CO}$ group donate $2 \mathrm{e}^{-}$ $\mathrm{V}=[\operatorname{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$ Electron count in $\mathrm{V}(\mathrm{CO})_{6}$ complex $=5+2 \times 6=17 \mathrm{e}^{-}$ So, $\mathrm{V}(\mathrm{CO})_{6}$ doesn't follow $18 \mathrm{e}^{-}$rule. To follow $18 \mathrm{e}^{-}$ rule $\mathrm{V}(\mathrm{CO})_{6}$ gain $1 \mathrm{e}^{-}$i.e., it is reduced easily and form $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}$complex.
AIIMS-26 May
COORDINATION COMPOUNDS
274211
The EAN value $\mathrm{y}\left[\mathrm{Ti}\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{0}$ is
1 32
2 33
3 34
4 35
Explanation:
(C) : Atomic Number of $\mathrm{Ti}=22$ Oxidation state of $\mathrm{Ti}=\mathrm{x}$ $\mathrm{x}+2 \times 0+2 \times(-1)=0$ $\mathrm{x}=+2$ Contribution by $\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{6}\right)=1 \mathrm{e}^{-}$contribution by $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)=5 \mathrm{e}^{-}$ EAN $=$ Atomic No. - Oxidation state + Number of electrons donated by ligands. EAN of $\left[\mathrm{Ti}\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]=22-2+2 \times 1+2 \times 5=34$
AMU-2018
COORDINATION COMPOUNDS
274212
Assertion : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\text { en })_{3}\right]^{+3}$ are stable complex. Reason: They are low spin complex
1 If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Explanation:
(B) : Coordination complexes are stable when it follows EAN rule. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ $\mathrm{EAN}=27+6 \times 2-3=36$ $\left[\mathrm{CO}(\mathrm{Cn})_{3}\right]^{3+}$ EAN $=27+6 \times 2-3=36$ Both complexes have EAN value is equal to atomic number of inert gases. So they are stable. $\mathrm{NH}_{3}$ and ethylene dia amine behaves as strong field ligand with cobalt in +3 oxidation, due to which pairing of metal d electron configuration and complex is known as low spin complex. Hence, both Assertion and Reason are correct and the reason is not the correct explanation of Assertion.
AIIMS-27 May
COORDINATION COMPOUNDS
274214
The correct order of electrical conductivity of the given complexes is
(D) : Electric conductivity depends on the number ions formed during ionization of complex compounds $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \longrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ No. of ions $=1$ $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right] \longrightarrow 2 \mathrm{~K}^{+}+\left[\mathrm{PtCl}_{6}\right]^{2-}$ No. of ions $=3$ $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow 4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]^{4-}$ No. of ions $=5$ $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}+\mathrm{Cl}^{-}$ No. of ions $=2$ Order of electric conductivity:- $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]<\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}<\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]<\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
274210
Which of the following can be reduced easily?
1 $\mathrm{V}(\mathrm{CO})_{6}$
2 $\mathrm{Mo}(\mathrm{CO})_{6}$
3 $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
4 $\mathrm{Fe}(\mathrm{CO})_{5}$
Explanation:
(A) : If complex follows $18 \mathrm{e}^{-}$rule than it is stable. $\mathrm{V}(\mathrm{CO})_{6} \Rightarrow$ One $\mathrm{CO}$ group donate $2 \mathrm{e}^{-}$ $\mathrm{V}=[\operatorname{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$ Electron count in $\mathrm{V}(\mathrm{CO})_{6}$ complex $=5+2 \times 6=17 \mathrm{e}^{-}$ So, $\mathrm{V}(\mathrm{CO})_{6}$ doesn't follow $18 \mathrm{e}^{-}$rule. To follow $18 \mathrm{e}^{-}$ rule $\mathrm{V}(\mathrm{CO})_{6}$ gain $1 \mathrm{e}^{-}$i.e., it is reduced easily and form $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}$complex.
AIIMS-26 May
COORDINATION COMPOUNDS
274211
The EAN value $\mathrm{y}\left[\mathrm{Ti}\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{0}$ is
1 32
2 33
3 34
4 35
Explanation:
(C) : Atomic Number of $\mathrm{Ti}=22$ Oxidation state of $\mathrm{Ti}=\mathrm{x}$ $\mathrm{x}+2 \times 0+2 \times(-1)=0$ $\mathrm{x}=+2$ Contribution by $\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{6}\right)=1 \mathrm{e}^{-}$contribution by $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)=5 \mathrm{e}^{-}$ EAN $=$ Atomic No. - Oxidation state + Number of electrons donated by ligands. EAN of $\left[\mathrm{Ti}\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]=22-2+2 \times 1+2 \times 5=34$
AMU-2018
COORDINATION COMPOUNDS
274212
Assertion : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\text { en })_{3}\right]^{+3}$ are stable complex. Reason: They are low spin complex
1 If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Explanation:
(B) : Coordination complexes are stable when it follows EAN rule. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ $\mathrm{EAN}=27+6 \times 2-3=36$ $\left[\mathrm{CO}(\mathrm{Cn})_{3}\right]^{3+}$ EAN $=27+6 \times 2-3=36$ Both complexes have EAN value is equal to atomic number of inert gases. So they are stable. $\mathrm{NH}_{3}$ and ethylene dia amine behaves as strong field ligand with cobalt in +3 oxidation, due to which pairing of metal d electron configuration and complex is known as low spin complex. Hence, both Assertion and Reason are correct and the reason is not the correct explanation of Assertion.
AIIMS-27 May
COORDINATION COMPOUNDS
274214
The correct order of electrical conductivity of the given complexes is
(D) : Electric conductivity depends on the number ions formed during ionization of complex compounds $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \longrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ No. of ions $=1$ $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right] \longrightarrow 2 \mathrm{~K}^{+}+\left[\mathrm{PtCl}_{6}\right]^{2-}$ No. of ions $=3$ $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow 4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]^{4-}$ No. of ions $=5$ $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}+\mathrm{Cl}^{-}$ No. of ions $=2$ Order of electric conductivity:- $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]<\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}<\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]<\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
274210
Which of the following can be reduced easily?
1 $\mathrm{V}(\mathrm{CO})_{6}$
2 $\mathrm{Mo}(\mathrm{CO})_{6}$
3 $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
4 $\mathrm{Fe}(\mathrm{CO})_{5}$
Explanation:
(A) : If complex follows $18 \mathrm{e}^{-}$rule than it is stable. $\mathrm{V}(\mathrm{CO})_{6} \Rightarrow$ One $\mathrm{CO}$ group donate $2 \mathrm{e}^{-}$ $\mathrm{V}=[\operatorname{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$ Electron count in $\mathrm{V}(\mathrm{CO})_{6}$ complex $=5+2 \times 6=17 \mathrm{e}^{-}$ So, $\mathrm{V}(\mathrm{CO})_{6}$ doesn't follow $18 \mathrm{e}^{-}$rule. To follow $18 \mathrm{e}^{-}$ rule $\mathrm{V}(\mathrm{CO})_{6}$ gain $1 \mathrm{e}^{-}$i.e., it is reduced easily and form $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}$complex.
AIIMS-26 May
COORDINATION COMPOUNDS
274211
The EAN value $\mathrm{y}\left[\mathrm{Ti}\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{0}$ is
1 32
2 33
3 34
4 35
Explanation:
(C) : Atomic Number of $\mathrm{Ti}=22$ Oxidation state of $\mathrm{Ti}=\mathrm{x}$ $\mathrm{x}+2 \times 0+2 \times(-1)=0$ $\mathrm{x}=+2$ Contribution by $\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{6}\right)=1 \mathrm{e}^{-}$contribution by $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)=5 \mathrm{e}^{-}$ EAN $=$ Atomic No. - Oxidation state + Number of electrons donated by ligands. EAN of $\left[\mathrm{Ti}\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]=22-2+2 \times 1+2 \times 5=34$
AMU-2018
COORDINATION COMPOUNDS
274212
Assertion : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\text { en })_{3}\right]^{+3}$ are stable complex. Reason: They are low spin complex
1 If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Explanation:
(B) : Coordination complexes are stable when it follows EAN rule. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ $\mathrm{EAN}=27+6 \times 2-3=36$ $\left[\mathrm{CO}(\mathrm{Cn})_{3}\right]^{3+}$ EAN $=27+6 \times 2-3=36$ Both complexes have EAN value is equal to atomic number of inert gases. So they are stable. $\mathrm{NH}_{3}$ and ethylene dia amine behaves as strong field ligand with cobalt in +3 oxidation, due to which pairing of metal d electron configuration and complex is known as low spin complex. Hence, both Assertion and Reason are correct and the reason is not the correct explanation of Assertion.
AIIMS-27 May
COORDINATION COMPOUNDS
274214
The correct order of electrical conductivity of the given complexes is
(D) : Electric conductivity depends on the number ions formed during ionization of complex compounds $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \longrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ No. of ions $=1$ $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right] \longrightarrow 2 \mathrm{~K}^{+}+\left[\mathrm{PtCl}_{6}\right]^{2-}$ No. of ions $=3$ $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow 4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]^{4-}$ No. of ions $=5$ $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}+\mathrm{Cl}^{-}$ No. of ions $=2$ Order of electric conductivity:- $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]<\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}<\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]<\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
COORDINATION COMPOUNDS
274210
Which of the following can be reduced easily?
1 $\mathrm{V}(\mathrm{CO})_{6}$
2 $\mathrm{Mo}(\mathrm{CO})_{6}$
3 $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
4 $\mathrm{Fe}(\mathrm{CO})_{5}$
Explanation:
(A) : If complex follows $18 \mathrm{e}^{-}$rule than it is stable. $\mathrm{V}(\mathrm{CO})_{6} \Rightarrow$ One $\mathrm{CO}$ group donate $2 \mathrm{e}^{-}$ $\mathrm{V}=[\operatorname{Ar}] 3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}$ Electron count in $\mathrm{V}(\mathrm{CO})_{6}$ complex $=5+2 \times 6=17 \mathrm{e}^{-}$ So, $\mathrm{V}(\mathrm{CO})_{6}$ doesn't follow $18 \mathrm{e}^{-}$rule. To follow $18 \mathrm{e}^{-}$ rule $\mathrm{V}(\mathrm{CO})_{6}$ gain $1 \mathrm{e}^{-}$i.e., it is reduced easily and form $\left[\mathrm{V}(\mathrm{CO})_{6}\right]^{-}$complex.
AIIMS-26 May
COORDINATION COMPOUNDS
274211
The EAN value $\mathrm{y}\left[\mathrm{Ti}\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]^{0}$ is
1 32
2 33
3 34
4 35
Explanation:
(C) : Atomic Number of $\mathrm{Ti}=22$ Oxidation state of $\mathrm{Ti}=\mathrm{x}$ $\mathrm{x}+2 \times 0+2 \times(-1)=0$ $\mathrm{x}=+2$ Contribution by $\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{6}\right)=1 \mathrm{e}^{-}$contribution by $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)=5 \mathrm{e}^{-}$ EAN $=$ Atomic No. - Oxidation state + Number of electrons donated by ligands. EAN of $\left[\mathrm{Ti}\left(\sigma-\mathrm{C}_{6} \mathrm{H}_{6}\right)_{2}\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right]=22-2+2 \times 1+2 \times 5=34$
AMU-2018
COORDINATION COMPOUNDS
274212
Assertion : $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}(\text { en })_{3}\right]^{+3}$ are stable complex. Reason: They are low spin complex
1 If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.
2 If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
3 If Assertion is correct but Reason is incorrect.
4 If both the Assertion and Reason are incorrect.
Explanation:
(B) : Coordination complexes are stable when it follows EAN rule. $\left[\mathrm{CO}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ $\mathrm{EAN}=27+6 \times 2-3=36$ $\left[\mathrm{CO}(\mathrm{Cn})_{3}\right]^{3+}$ EAN $=27+6 \times 2-3=36$ Both complexes have EAN value is equal to atomic number of inert gases. So they are stable. $\mathrm{NH}_{3}$ and ethylene dia amine behaves as strong field ligand with cobalt in +3 oxidation, due to which pairing of metal d electron configuration and complex is known as low spin complex. Hence, both Assertion and Reason are correct and the reason is not the correct explanation of Assertion.
AIIMS-27 May
COORDINATION COMPOUNDS
274214
The correct order of electrical conductivity of the given complexes is
(D) : Electric conductivity depends on the number ions formed during ionization of complex compounds $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \longrightarrow\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]$ No. of ions $=1$ $\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right] \longrightarrow 2 \mathrm{~K}^{+}+\left[\mathrm{PtCl}_{6}\right]^{2-}$ No. of ions $=3$ $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \longrightarrow 4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{4}\right]^{4-}$ No. of ions $=5$ $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \longrightarrow\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}+\mathrm{Cl}^{-}$ No. of ions $=2$ Order of electric conductivity:- $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}\right]<\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}<\mathrm{K}_{2}\left[\mathrm{PtCl}_{6}\right]<\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$