04. Conductance and Conductor
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

276220 The equivalent conductance of $M / 32$ solution of a weak monobasic acid is $8.0 \mathrm{mho} \mathrm{cm}^{-2}$ and at infinite dilution is $400 \mathrm{mho} \mathrm{cm}^{2}$. The dissociation constant of this acid is

1 $1.25 \times 10^{-6}$
2 $6.25 \times 10^{-4}$
3 $1.25 \times 10^{-4}$
4 $1.25 \times 10^{-5}$
ELECTROCHEMISTRY

276194 The ionic conductance of $\mathrm{Ba}^{2+}$ and $\mathrm{Cl}^{-}$are respectively 127 and $76 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ at infinite dilution. The equivalent conductance of $\mathrm{BaCl}_{2}$ at infinite dilution will be

1 $330 \Omega^{-1} \mathrm{~cm}^{2}$
2 $203 \Omega^{-1} \mathrm{~cm}^{2}$
3 $139 \Omega^{-1} \mathrm{~cm}^{2}$
4 $51 \Omega^{-1} \mathrm{~cm}^{2}$
ELECTROCHEMISTRY

276196 A cell, with cell constant $0.4 \mathrm{~cm}^{-1}$, has the resistance of $40 \mathrm{ohm}$ of a $0.01 \mathrm{M}$ solution of an electrolyte, then the molar conductivity in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ will be

1 10
2 $10^{4}$
3 $10^{3}$
4 $10^{2}$
ELECTROCHEMISTRY

276197 Resistance of $0.2 \mathrm{M}$ solution of an electrolyte is $50 \Omega$. The specific conductance of the solution is $1.4 \mathrm{Sm}^{-1}$. The ressitance of $0.5 \mathrm{M}$ solution of the same electrolyte is $280 \Omega$. The molar conductivity of $0.5 \mathrm{M}$ solution of the electrolyte in $\mathrm{S} \mathrm{m}^{2} \mathrm{~mol}^{-1}$ is

1 $5 \times 10^{-4}$
2 $5 \times 10^{-3}$
3 $5 \times 10^{3}$
4 $5 \times 10^{2}$
ELECTROCHEMISTRY

276220 The equivalent conductance of $M / 32$ solution of a weak monobasic acid is $8.0 \mathrm{mho} \mathrm{cm}^{-2}$ and at infinite dilution is $400 \mathrm{mho} \mathrm{cm}^{2}$. The dissociation constant of this acid is

1 $1.25 \times 10^{-6}$
2 $6.25 \times 10^{-4}$
3 $1.25 \times 10^{-4}$
4 $1.25 \times 10^{-5}$
ELECTROCHEMISTRY

276194 The ionic conductance of $\mathrm{Ba}^{2+}$ and $\mathrm{Cl}^{-}$are respectively 127 and $76 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ at infinite dilution. The equivalent conductance of $\mathrm{BaCl}_{2}$ at infinite dilution will be

1 $330 \Omega^{-1} \mathrm{~cm}^{2}$
2 $203 \Omega^{-1} \mathrm{~cm}^{2}$
3 $139 \Omega^{-1} \mathrm{~cm}^{2}$
4 $51 \Omega^{-1} \mathrm{~cm}^{2}$
ELECTROCHEMISTRY

276196 A cell, with cell constant $0.4 \mathrm{~cm}^{-1}$, has the resistance of $40 \mathrm{ohm}$ of a $0.01 \mathrm{M}$ solution of an electrolyte, then the molar conductivity in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ will be

1 10
2 $10^{4}$
3 $10^{3}$
4 $10^{2}$
ELECTROCHEMISTRY

276197 Resistance of $0.2 \mathrm{M}$ solution of an electrolyte is $50 \Omega$. The specific conductance of the solution is $1.4 \mathrm{Sm}^{-1}$. The ressitance of $0.5 \mathrm{M}$ solution of the same electrolyte is $280 \Omega$. The molar conductivity of $0.5 \mathrm{M}$ solution of the electrolyte in $\mathrm{S} \mathrm{m}^{2} \mathrm{~mol}^{-1}$ is

1 $5 \times 10^{-4}$
2 $5 \times 10^{-3}$
3 $5 \times 10^{3}$
4 $5 \times 10^{2}$
ELECTROCHEMISTRY

276220 The equivalent conductance of $M / 32$ solution of a weak monobasic acid is $8.0 \mathrm{mho} \mathrm{cm}^{-2}$ and at infinite dilution is $400 \mathrm{mho} \mathrm{cm}^{2}$. The dissociation constant of this acid is

1 $1.25 \times 10^{-6}$
2 $6.25 \times 10^{-4}$
3 $1.25 \times 10^{-4}$
4 $1.25 \times 10^{-5}$
ELECTROCHEMISTRY

276194 The ionic conductance of $\mathrm{Ba}^{2+}$ and $\mathrm{Cl}^{-}$are respectively 127 and $76 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ at infinite dilution. The equivalent conductance of $\mathrm{BaCl}_{2}$ at infinite dilution will be

1 $330 \Omega^{-1} \mathrm{~cm}^{2}$
2 $203 \Omega^{-1} \mathrm{~cm}^{2}$
3 $139 \Omega^{-1} \mathrm{~cm}^{2}$
4 $51 \Omega^{-1} \mathrm{~cm}^{2}$
ELECTROCHEMISTRY

276196 A cell, with cell constant $0.4 \mathrm{~cm}^{-1}$, has the resistance of $40 \mathrm{ohm}$ of a $0.01 \mathrm{M}$ solution of an electrolyte, then the molar conductivity in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ will be

1 10
2 $10^{4}$
3 $10^{3}$
4 $10^{2}$
ELECTROCHEMISTRY

276197 Resistance of $0.2 \mathrm{M}$ solution of an electrolyte is $50 \Omega$. The specific conductance of the solution is $1.4 \mathrm{Sm}^{-1}$. The ressitance of $0.5 \mathrm{M}$ solution of the same electrolyte is $280 \Omega$. The molar conductivity of $0.5 \mathrm{M}$ solution of the electrolyte in $\mathrm{S} \mathrm{m}^{2} \mathrm{~mol}^{-1}$ is

1 $5 \times 10^{-4}$
2 $5 \times 10^{-3}$
3 $5 \times 10^{3}$
4 $5 \times 10^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

276220 The equivalent conductance of $M / 32$ solution of a weak monobasic acid is $8.0 \mathrm{mho} \mathrm{cm}^{-2}$ and at infinite dilution is $400 \mathrm{mho} \mathrm{cm}^{2}$. The dissociation constant of this acid is

1 $1.25 \times 10^{-6}$
2 $6.25 \times 10^{-4}$
3 $1.25 \times 10^{-4}$
4 $1.25 \times 10^{-5}$
ELECTROCHEMISTRY

276194 The ionic conductance of $\mathrm{Ba}^{2+}$ and $\mathrm{Cl}^{-}$are respectively 127 and $76 \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ at infinite dilution. The equivalent conductance of $\mathrm{BaCl}_{2}$ at infinite dilution will be

1 $330 \Omega^{-1} \mathrm{~cm}^{2}$
2 $203 \Omega^{-1} \mathrm{~cm}^{2}$
3 $139 \Omega^{-1} \mathrm{~cm}^{2}$
4 $51 \Omega^{-1} \mathrm{~cm}^{2}$
ELECTROCHEMISTRY

276196 A cell, with cell constant $0.4 \mathrm{~cm}^{-1}$, has the resistance of $40 \mathrm{ohm}$ of a $0.01 \mathrm{M}$ solution of an electrolyte, then the molar conductivity in $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ will be

1 10
2 $10^{4}$
3 $10^{3}$
4 $10^{2}$
ELECTROCHEMISTRY

276197 Resistance of $0.2 \mathrm{M}$ solution of an electrolyte is $50 \Omega$. The specific conductance of the solution is $1.4 \mathrm{Sm}^{-1}$. The ressitance of $0.5 \mathrm{M}$ solution of the same electrolyte is $280 \Omega$. The molar conductivity of $0.5 \mathrm{M}$ solution of the electrolyte in $\mathrm{S} \mathrm{m}^{2} \mathrm{~mol}^{-1}$ is

1 $5 \times 10^{-4}$
2 $5 \times 10^{-3}$
3 $5 \times 10^{3}$
4 $5 \times 10^{2}$