04. Conductance and Conductor
ELECTROCHEMISTRY

276158 Addition of excess of $\mathrm{AgNO}_{3}$ to an aqueous solution of 1 mole of $\mathrm{PdCl}_{2} \cdot 4 \mathrm{NH}_{3}$ gives 2 moles of $\mathrm{AgCl}$. The conductivity of this solution corresponds to

1 $1: 1$ electrolyte
2 $1: 3$ electrolyte
3 $1: 2$ electrolyte
4 $1: 4$ electrolyte
ELECTROCHEMISTRY

276160 When during electrolysis of solution of $\mathrm{AgNO}_{3}$, $9650 \mathrm{C}$ of charge pass through the electroplating bath, the mass of silver deposited on the cathode will be

1 $1.08 \mathrm{~g}$
2 $10.8 \mathrm{~g}$
3 $21.6 \mathrm{~g}$
4 $108 \mathrm{~g}$
ELECTROCHEMISTRY

276161 If molar conductivity of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$ions are 119 and $71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively, then the molar conductivity of $\mathrm{CaCl}_{2}$ at infinite dilution is

1 $215 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2 $340 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3 $126 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4 $261 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
ELECTROCHEMISTRY

276163 Consider the galvanic cell, Pt (s) $\mid \mathrm{H}_{2}$ (1bar) $\mid \mathrm{HCl}$ (aq) (1M) $\mid \mathrm{Cl}_{2}$ (1bar) $\mid \operatorname{Pt}(\mathrm{s})$.
After running the cell for sometime, the concentration of the electrolyte is automatically raised to $3 \mathrm{M}$ HCl. Molar conductivity of the $3 \mathrm{M} \mathrm{HCl}$ is about $240 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and limiting molar conductivity of $\mathrm{HCl}$ is about $420 \mathrm{~S} \mathrm{~cm} 2$ $\mathrm{mol}^{-1}$. If $K_{b}$ of water is $0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}$, calculate the boiling point of the electrolyte at the end of the experiment

1 $375.6 \mathrm{~K}$
2 $376.3 \mathrm{~K}$
3 $378.1 \mathrm{~K}$
4 $380.3 \mathrm{~K}$
5 $381.6 \mathrm{~K}$
ELECTROCHEMISTRY

276158 Addition of excess of $\mathrm{AgNO}_{3}$ to an aqueous solution of 1 mole of $\mathrm{PdCl}_{2} \cdot 4 \mathrm{NH}_{3}$ gives 2 moles of $\mathrm{AgCl}$. The conductivity of this solution corresponds to

1 $1: 1$ electrolyte
2 $1: 3$ electrolyte
3 $1: 2$ electrolyte
4 $1: 4$ electrolyte
ELECTROCHEMISTRY

276160 When during electrolysis of solution of $\mathrm{AgNO}_{3}$, $9650 \mathrm{C}$ of charge pass through the electroplating bath, the mass of silver deposited on the cathode will be

1 $1.08 \mathrm{~g}$
2 $10.8 \mathrm{~g}$
3 $21.6 \mathrm{~g}$
4 $108 \mathrm{~g}$
ELECTROCHEMISTRY

276161 If molar conductivity of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$ions are 119 and $71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively, then the molar conductivity of $\mathrm{CaCl}_{2}$ at infinite dilution is

1 $215 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2 $340 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3 $126 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4 $261 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
ELECTROCHEMISTRY

276163 Consider the galvanic cell, Pt (s) $\mid \mathrm{H}_{2}$ (1bar) $\mid \mathrm{HCl}$ (aq) (1M) $\mid \mathrm{Cl}_{2}$ (1bar) $\mid \operatorname{Pt}(\mathrm{s})$.
After running the cell for sometime, the concentration of the electrolyte is automatically raised to $3 \mathrm{M}$ HCl. Molar conductivity of the $3 \mathrm{M} \mathrm{HCl}$ is about $240 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and limiting molar conductivity of $\mathrm{HCl}$ is about $420 \mathrm{~S} \mathrm{~cm} 2$ $\mathrm{mol}^{-1}$. If $K_{b}$ of water is $0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}$, calculate the boiling point of the electrolyte at the end of the experiment

1 $375.6 \mathrm{~K}$
2 $376.3 \mathrm{~K}$
3 $378.1 \mathrm{~K}$
4 $380.3 \mathrm{~K}$
5 $381.6 \mathrm{~K}$
ELECTROCHEMISTRY

276158 Addition of excess of $\mathrm{AgNO}_{3}$ to an aqueous solution of 1 mole of $\mathrm{PdCl}_{2} \cdot 4 \mathrm{NH}_{3}$ gives 2 moles of $\mathrm{AgCl}$. The conductivity of this solution corresponds to

1 $1: 1$ electrolyte
2 $1: 3$ electrolyte
3 $1: 2$ electrolyte
4 $1: 4$ electrolyte
ELECTROCHEMISTRY

276160 When during electrolysis of solution of $\mathrm{AgNO}_{3}$, $9650 \mathrm{C}$ of charge pass through the electroplating bath, the mass of silver deposited on the cathode will be

1 $1.08 \mathrm{~g}$
2 $10.8 \mathrm{~g}$
3 $21.6 \mathrm{~g}$
4 $108 \mathrm{~g}$
ELECTROCHEMISTRY

276161 If molar conductivity of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$ions are 119 and $71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively, then the molar conductivity of $\mathrm{CaCl}_{2}$ at infinite dilution is

1 $215 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2 $340 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3 $126 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4 $261 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
ELECTROCHEMISTRY

276163 Consider the galvanic cell, Pt (s) $\mid \mathrm{H}_{2}$ (1bar) $\mid \mathrm{HCl}$ (aq) (1M) $\mid \mathrm{Cl}_{2}$ (1bar) $\mid \operatorname{Pt}(\mathrm{s})$.
After running the cell for sometime, the concentration of the electrolyte is automatically raised to $3 \mathrm{M}$ HCl. Molar conductivity of the $3 \mathrm{M} \mathrm{HCl}$ is about $240 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and limiting molar conductivity of $\mathrm{HCl}$ is about $420 \mathrm{~S} \mathrm{~cm} 2$ $\mathrm{mol}^{-1}$. If $K_{b}$ of water is $0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}$, calculate the boiling point of the electrolyte at the end of the experiment

1 $375.6 \mathrm{~K}$
2 $376.3 \mathrm{~K}$
3 $378.1 \mathrm{~K}$
4 $380.3 \mathrm{~K}$
5 $381.6 \mathrm{~K}$
ELECTROCHEMISTRY

276158 Addition of excess of $\mathrm{AgNO}_{3}$ to an aqueous solution of 1 mole of $\mathrm{PdCl}_{2} \cdot 4 \mathrm{NH}_{3}$ gives 2 moles of $\mathrm{AgCl}$. The conductivity of this solution corresponds to

1 $1: 1$ electrolyte
2 $1: 3$ electrolyte
3 $1: 2$ electrolyte
4 $1: 4$ electrolyte
ELECTROCHEMISTRY

276160 When during electrolysis of solution of $\mathrm{AgNO}_{3}$, $9650 \mathrm{C}$ of charge pass through the electroplating bath, the mass of silver deposited on the cathode will be

1 $1.08 \mathrm{~g}$
2 $10.8 \mathrm{~g}$
3 $21.6 \mathrm{~g}$
4 $108 \mathrm{~g}$
ELECTROCHEMISTRY

276161 If molar conductivity of $\mathrm{Ca}^{2+}$ and $\mathrm{Cl}^{-}$ions are 119 and $71 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ respectively, then the molar conductivity of $\mathrm{CaCl}_{2}$ at infinite dilution is

1 $215 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
2 $340 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
3 $126 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
4 $261 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
ELECTROCHEMISTRY

276163 Consider the galvanic cell, Pt (s) $\mid \mathrm{H}_{2}$ (1bar) $\mid \mathrm{HCl}$ (aq) (1M) $\mid \mathrm{Cl}_{2}$ (1bar) $\mid \operatorname{Pt}(\mathrm{s})$.
After running the cell for sometime, the concentration of the electrolyte is automatically raised to $3 \mathrm{M}$ HCl. Molar conductivity of the $3 \mathrm{M} \mathrm{HCl}$ is about $240 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$ and limiting molar conductivity of $\mathrm{HCl}$ is about $420 \mathrm{~S} \mathrm{~cm} 2$ $\mathrm{mol}^{-1}$. If $K_{b}$ of water is $0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}$, calculate the boiling point of the electrolyte at the end of the experiment

1 $375.6 \mathrm{~K}$
2 $376.3 \mathrm{~K}$
3 $378.1 \mathrm{~K}$
4 $380.3 \mathrm{~K}$
5 $381.6 \mathrm{~K}$