276096 The emf of the Daniel Cell $\mathrm{Zn}\left \vert\mathrm{ZnSO}_{4}(0.01 \mathrm{M})\right \vert\left \vert\mathrm{CuSO}_{4}(\mathbf{1 M})\right \vert \mathrm{Cu}$ at $298 \mathrm{~K}$ is $E_{1}$. When concentration of $\mathrm{ZnSO}_{4}$ is changed to $1 \mathrm{M}$ and that of $\mathrm{CuSO}_{4}$ is changed to $0.01 \mathrm{M}$. the emf changed to $E_{2}$. Then find the relationship between $E_{1}$ and $E_{2}$.
276097
Calculate the maximum work that can be obtained from the cell,
$\mathbf{Z n}\left \vert\mathbf{Z n}^{2+}(\mathbf{1} \mathbf{M})\right \vert\left \vert\mathbf{A g}^{+}(\mathbf{1 M})\right \vert \mathbf{A g}$
Where $\mathrm{E}^{\circ}{ }_{\mathrm{Zn}^{2+} \mid \mathrm{Zn}}=-0.76 \mathrm{~V}$ and $\mathrm{E}^{\circ}{ }_{\mathrm{Ag}^{+} \mid \mathrm{Ag}}=0.80 \mathrm{~V}$
276099
Given the data at $25^{\circ} \mathrm{C}$
$\mathrm{Ag}+\mathrm{I}^{-} \rightarrow \mathrm{AgI}+\mathrm{e}^{-} ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 1 5 2} \mathrm{V}$
$\mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-} ; \mathrm{E}^{\mathrm{o}}=-0.8 \mathrm{~V}$
What is the value of $\log K_{\text {sp }}$ for AgI?
$\left(2.303 \frac{\mathrm{RT}}{\mathrm{F}}=0.059 \mathrm{~V}\right)$
276096 The emf of the Daniel Cell $\mathrm{Zn}\left \vert\mathrm{ZnSO}_{4}(0.01 \mathrm{M})\right \vert\left \vert\mathrm{CuSO}_{4}(\mathbf{1 M})\right \vert \mathrm{Cu}$ at $298 \mathrm{~K}$ is $E_{1}$. When concentration of $\mathrm{ZnSO}_{4}$ is changed to $1 \mathrm{M}$ and that of $\mathrm{CuSO}_{4}$ is changed to $0.01 \mathrm{M}$. the emf changed to $E_{2}$. Then find the relationship between $E_{1}$ and $E_{2}$.
276097
Calculate the maximum work that can be obtained from the cell,
$\mathbf{Z n}\left \vert\mathbf{Z n}^{2+}(\mathbf{1} \mathbf{M})\right \vert\left \vert\mathbf{A g}^{+}(\mathbf{1 M})\right \vert \mathbf{A g}$
Where $\mathrm{E}^{\circ}{ }_{\mathrm{Zn}^{2+} \mid \mathrm{Zn}}=-0.76 \mathrm{~V}$ and $\mathrm{E}^{\circ}{ }_{\mathrm{Ag}^{+} \mid \mathrm{Ag}}=0.80 \mathrm{~V}$
276099
Given the data at $25^{\circ} \mathrm{C}$
$\mathrm{Ag}+\mathrm{I}^{-} \rightarrow \mathrm{AgI}+\mathrm{e}^{-} ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 1 5 2} \mathrm{V}$
$\mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-} ; \mathrm{E}^{\mathrm{o}}=-0.8 \mathrm{~V}$
What is the value of $\log K_{\text {sp }}$ for AgI?
$\left(2.303 \frac{\mathrm{RT}}{\mathrm{F}}=0.059 \mathrm{~V}\right)$
276096 The emf of the Daniel Cell $\mathrm{Zn}\left \vert\mathrm{ZnSO}_{4}(0.01 \mathrm{M})\right \vert\left \vert\mathrm{CuSO}_{4}(\mathbf{1 M})\right \vert \mathrm{Cu}$ at $298 \mathrm{~K}$ is $E_{1}$. When concentration of $\mathrm{ZnSO}_{4}$ is changed to $1 \mathrm{M}$ and that of $\mathrm{CuSO}_{4}$ is changed to $0.01 \mathrm{M}$. the emf changed to $E_{2}$. Then find the relationship between $E_{1}$ and $E_{2}$.
276097
Calculate the maximum work that can be obtained from the cell,
$\mathbf{Z n}\left \vert\mathbf{Z n}^{2+}(\mathbf{1} \mathbf{M})\right \vert\left \vert\mathbf{A g}^{+}(\mathbf{1 M})\right \vert \mathbf{A g}$
Where $\mathrm{E}^{\circ}{ }_{\mathrm{Zn}^{2+} \mid \mathrm{Zn}}=-0.76 \mathrm{~V}$ and $\mathrm{E}^{\circ}{ }_{\mathrm{Ag}^{+} \mid \mathrm{Ag}}=0.80 \mathrm{~V}$
276099
Given the data at $25^{\circ} \mathrm{C}$
$\mathrm{Ag}+\mathrm{I}^{-} \rightarrow \mathrm{AgI}+\mathrm{e}^{-} ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 1 5 2} \mathrm{V}$
$\mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-} ; \mathrm{E}^{\mathrm{o}}=-0.8 \mathrm{~V}$
What is the value of $\log K_{\text {sp }}$ for AgI?
$\left(2.303 \frac{\mathrm{RT}}{\mathrm{F}}=0.059 \mathrm{~V}\right)$
276096 The emf of the Daniel Cell $\mathrm{Zn}\left \vert\mathrm{ZnSO}_{4}(0.01 \mathrm{M})\right \vert\left \vert\mathrm{CuSO}_{4}(\mathbf{1 M})\right \vert \mathrm{Cu}$ at $298 \mathrm{~K}$ is $E_{1}$. When concentration of $\mathrm{ZnSO}_{4}$ is changed to $1 \mathrm{M}$ and that of $\mathrm{CuSO}_{4}$ is changed to $0.01 \mathrm{M}$. the emf changed to $E_{2}$. Then find the relationship between $E_{1}$ and $E_{2}$.
276097
Calculate the maximum work that can be obtained from the cell,
$\mathbf{Z n}\left \vert\mathbf{Z n}^{2+}(\mathbf{1} \mathbf{M})\right \vert\left \vert\mathbf{A g}^{+}(\mathbf{1 M})\right \vert \mathbf{A g}$
Where $\mathrm{E}^{\circ}{ }_{\mathrm{Zn}^{2+} \mid \mathrm{Zn}}=-0.76 \mathrm{~V}$ and $\mathrm{E}^{\circ}{ }_{\mathrm{Ag}^{+} \mid \mathrm{Ag}}=0.80 \mathrm{~V}$
276099
Given the data at $25^{\circ} \mathrm{C}$
$\mathrm{Ag}+\mathrm{I}^{-} \rightarrow \mathrm{AgI}+\mathrm{e}^{-} ; \mathrm{E}^{\mathbf{0}}=\mathbf{0 . 1 5 2} \mathrm{V}$
$\mathrm{Ag} \rightarrow \mathrm{Ag}^{+}+\mathrm{e}^{-} ; \mathrm{E}^{\mathrm{o}}=-0.8 \mathrm{~V}$
What is the value of $\log K_{\text {sp }}$ for AgI?
$\left(2.303 \frac{\mathrm{RT}}{\mathrm{F}}=0.059 \mathrm{~V}\right)$