275939
What is the electrode potential (in $V$ ) of the following electrode at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Ni}^{2+}(0.1 \mathrm{M}) \mid \mathrm{Ni}(\mathrm{s})$ (Standard reaction potential of
$\mathrm{Ni}^{2+} \mid \mathrm{Ni}$ is $\left.-0.25 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=\mathbf{0 . 0 6}\right)$
275942
The standard electrode potential for the halfcell reactions are
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn} ; \mathbf{E}^{0}=-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe} ; \mathrm{E}^{0}=-0.44 \mathrm{~V}$
The emf of the cell reaction,
$\mathrm{Fe}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}$ is
275943
The standard reduction potential for $\mathrm{Mg}^{2+} / \mathrm{Mg}$ is $-2.37 \mathrm{~V}$ and for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is 0.337. The $\mathrm{E}_{\text {cell }}^{\circ}$ for the following reaction is
$\mathrm{Mg}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{Cu}$
275944
Given:
(i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}, \mathrm{E}^{0}=0.337 \mathrm{~V}$
(ii) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}, \mathrm{E}^{0}=0.153 \mathrm{~V}$
Electrode potential, $\mathrm{E}^{0}$ for the reaction $\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}$, will be
275939
What is the electrode potential (in $V$ ) of the following electrode at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Ni}^{2+}(0.1 \mathrm{M}) \mid \mathrm{Ni}(\mathrm{s})$ (Standard reaction potential of
$\mathrm{Ni}^{2+} \mid \mathrm{Ni}$ is $\left.-0.25 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=\mathbf{0 . 0 6}\right)$
275942
The standard electrode potential for the halfcell reactions are
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn} ; \mathbf{E}^{0}=-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe} ; \mathrm{E}^{0}=-0.44 \mathrm{~V}$
The emf of the cell reaction,
$\mathrm{Fe}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}$ is
275943
The standard reduction potential for $\mathrm{Mg}^{2+} / \mathrm{Mg}$ is $-2.37 \mathrm{~V}$ and for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is 0.337. The $\mathrm{E}_{\text {cell }}^{\circ}$ for the following reaction is
$\mathrm{Mg}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{Cu}$
275944
Given:
(i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}, \mathrm{E}^{0}=0.337 \mathrm{~V}$
(ii) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}, \mathrm{E}^{0}=0.153 \mathrm{~V}$
Electrode potential, $\mathrm{E}^{0}$ for the reaction $\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}$, will be
275939
What is the electrode potential (in $V$ ) of the following electrode at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Ni}^{2+}(0.1 \mathrm{M}) \mid \mathrm{Ni}(\mathrm{s})$ (Standard reaction potential of
$\mathrm{Ni}^{2+} \mid \mathrm{Ni}$ is $\left.-0.25 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=\mathbf{0 . 0 6}\right)$
275942
The standard electrode potential for the halfcell reactions are
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn} ; \mathbf{E}^{0}=-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe} ; \mathrm{E}^{0}=-0.44 \mathrm{~V}$
The emf of the cell reaction,
$\mathrm{Fe}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}$ is
275943
The standard reduction potential for $\mathrm{Mg}^{2+} / \mathrm{Mg}$ is $-2.37 \mathrm{~V}$ and for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is 0.337. The $\mathrm{E}_{\text {cell }}^{\circ}$ for the following reaction is
$\mathrm{Mg}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{Cu}$
275944
Given:
(i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}, \mathrm{E}^{0}=0.337 \mathrm{~V}$
(ii) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}, \mathrm{E}^{0}=0.153 \mathrm{~V}$
Electrode potential, $\mathrm{E}^{0}$ for the reaction $\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}$, will be
275939
What is the electrode potential (in $V$ ) of the following electrode at $25^{\circ} \mathrm{C}$ ?
$\mathrm{Ni}^{2+}(0.1 \mathrm{M}) \mid \mathrm{Ni}(\mathrm{s})$ (Standard reaction potential of
$\mathrm{Ni}^{2+} \mid \mathrm{Ni}$ is $\left.-0.25 \mathrm{~V}, \frac{2.303 \mathrm{RT}}{\mathrm{F}}=\mathbf{0 . 0 6}\right)$
275942
The standard electrode potential for the halfcell reactions are
$\mathrm{Zn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn} ; \mathbf{E}^{0}=-0.76 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe} ; \mathrm{E}^{0}=-0.44 \mathrm{~V}$
The emf of the cell reaction,
$\mathrm{Fe}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Zn}^{2+}+\mathrm{Fe}$ is
275943
The standard reduction potential for $\mathrm{Mg}^{2+} / \mathrm{Mg}$ is $-2.37 \mathrm{~V}$ and for $\mathrm{Cu}^{2+} / \mathrm{Cu}$ is 0.337. The $\mathrm{E}_{\text {cell }}^{\circ}$ for the following reaction is
$\mathrm{Mg}+\mathrm{Cu}^{2+} \longrightarrow \mathrm{Mg}^{2+}+\mathrm{Cu}$
275944
Given:
(i) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}, \mathrm{E}^{0}=0.337 \mathrm{~V}$
(ii) $\mathrm{Cu}^{2+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}^{+}, \mathrm{E}^{0}=0.153 \mathrm{~V}$
Electrode potential, $\mathrm{E}^{0}$ for the reaction $\mathrm{Cu}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}$, will be