275913
The electrode potentials for,
$\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}$ are $+\mathbf{0 . 1 5} \mathrm{V}$ and $+0.50 \mathrm{~V}$ respectively. The value of $\mathrm{E}^{\mathbf{0}} \mathrm{Cu}^{2+} / \mathrm{Cu}$ will be
275914 A solution contains $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and $\mathrm{I}^{-}$ions. This solution was treated with iodine at $35^{0} \mathbf{C} . \mathrm{E}^{0}$ for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is $+0.77 \mathrm{~V}$ and $\mathrm{E}^{0}$ for $\mathrm{I}_{2} / 2 \mathrm{I}^{-}=\mathbf{0 . 5 3 6} \mathrm{V}$. The favourable redox reaction is
275917
Given the following in E.q. (i) and (ii), claculate the EMF of the cell given in Eq. (iii)
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathbf{C u}(\mathrm{s})+\mathrm{I}^{-} \\
& \mathrm{E}^{0}=-\mathbf{0 . 1 6} \\
& \mathrm{Zn}^{2+} \text { (aq) }+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})
\end{aligned}$
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{I}^{-} \\
& \quad \mathrm{E}^0=-0.16 \\
& \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \\
& E^0=-0.76 \\
& \mathrm{Zn}_{\Theta}\left \vert\mathrm{Zn}^{2+}(\mathbf{1 . 0 M})\right \vert\left \vert\mathbf{I}^{-(1.0 M)}\right \vert \underset{\oplus}{\mathrm{CuI} \mid \mathrm{Cu}}
\end{aligned}$
275913
The electrode potentials for,
$\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}$ are $+\mathbf{0 . 1 5} \mathrm{V}$ and $+0.50 \mathrm{~V}$ respectively. The value of $\mathrm{E}^{\mathbf{0}} \mathrm{Cu}^{2+} / \mathrm{Cu}$ will be
275914 A solution contains $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and $\mathrm{I}^{-}$ions. This solution was treated with iodine at $35^{0} \mathbf{C} . \mathrm{E}^{0}$ for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is $+0.77 \mathrm{~V}$ and $\mathrm{E}^{0}$ for $\mathrm{I}_{2} / 2 \mathrm{I}^{-}=\mathbf{0 . 5 3 6} \mathrm{V}$. The favourable redox reaction is
275917
Given the following in E.q. (i) and (ii), claculate the EMF of the cell given in Eq. (iii)
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathbf{C u}(\mathrm{s})+\mathrm{I}^{-} \\
& \mathrm{E}^{0}=-\mathbf{0 . 1 6} \\
& \mathrm{Zn}^{2+} \text { (aq) }+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})
\end{aligned}$
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{I}^{-} \\
& \quad \mathrm{E}^0=-0.16 \\
& \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \\
& E^0=-0.76 \\
& \mathrm{Zn}_{\Theta}\left \vert\mathrm{Zn}^{2+}(\mathbf{1 . 0 M})\right \vert\left \vert\mathbf{I}^{-(1.0 M)}\right \vert \underset{\oplus}{\mathrm{CuI} \mid \mathrm{Cu}}
\end{aligned}$
275913
The electrode potentials for,
$\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}$ are $+\mathbf{0 . 1 5} \mathrm{V}$ and $+0.50 \mathrm{~V}$ respectively. The value of $\mathrm{E}^{\mathbf{0}} \mathrm{Cu}^{2+} / \mathrm{Cu}$ will be
275914 A solution contains $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and $\mathrm{I}^{-}$ions. This solution was treated with iodine at $35^{0} \mathbf{C} . \mathrm{E}^{0}$ for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is $+0.77 \mathrm{~V}$ and $\mathrm{E}^{0}$ for $\mathrm{I}_{2} / 2 \mathrm{I}^{-}=\mathbf{0 . 5 3 6} \mathrm{V}$. The favourable redox reaction is
275917
Given the following in E.q. (i) and (ii), claculate the EMF of the cell given in Eq. (iii)
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathbf{C u}(\mathrm{s})+\mathrm{I}^{-} \\
& \mathrm{E}^{0}=-\mathbf{0 . 1 6} \\
& \mathrm{Zn}^{2+} \text { (aq) }+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})
\end{aligned}$
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{I}^{-} \\
& \quad \mathrm{E}^0=-0.16 \\
& \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \\
& E^0=-0.76 \\
& \mathrm{Zn}_{\Theta}\left \vert\mathrm{Zn}^{2+}(\mathbf{1 . 0 M})\right \vert\left \vert\mathbf{I}^{-(1.0 M)}\right \vert \underset{\oplus}{\mathrm{CuI} \mid \mathrm{Cu}}
\end{aligned}$
275913
The electrode potentials for,
$\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}$ are $+\mathbf{0 . 1 5} \mathrm{V}$ and $+0.50 \mathrm{~V}$ respectively. The value of $\mathrm{E}^{\mathbf{0}} \mathrm{Cu}^{2+} / \mathrm{Cu}$ will be
275914 A solution contains $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and $\mathrm{I}^{-}$ions. This solution was treated with iodine at $35^{0} \mathbf{C} . \mathrm{E}^{0}$ for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is $+0.77 \mathrm{~V}$ and $\mathrm{E}^{0}$ for $\mathrm{I}_{2} / 2 \mathrm{I}^{-}=\mathbf{0 . 5 3 6} \mathrm{V}$. The favourable redox reaction is
275917
Given the following in E.q. (i) and (ii), claculate the EMF of the cell given in Eq. (iii)
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathbf{C u}(\mathrm{s})+\mathrm{I}^{-} \\
& \mathrm{E}^{0}=-\mathbf{0 . 1 6} \\
& \mathrm{Zn}^{2+} \text { (aq) }+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})
\end{aligned}$
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{I}^{-} \\
& \quad \mathrm{E}^0=-0.16 \\
& \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \\
& E^0=-0.76 \\
& \mathrm{Zn}_{\Theta}\left \vert\mathrm{Zn}^{2+}(\mathbf{1 . 0 M})\right \vert\left \vert\mathbf{I}^{-(1.0 M)}\right \vert \underset{\oplus}{\mathrm{CuI} \mid \mathrm{Cu}}
\end{aligned}$
275913
The electrode potentials for,
$\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{aq})}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}$ are $+\mathbf{0 . 1 5} \mathrm{V}$ and $+0.50 \mathrm{~V}$ respectively. The value of $\mathrm{E}^{\mathbf{0}} \mathrm{Cu}^{2+} / \mathrm{Cu}$ will be
275914 A solution contains $\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and $\mathrm{I}^{-}$ions. This solution was treated with iodine at $35^{0} \mathbf{C} . \mathrm{E}^{0}$ for $\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is $+0.77 \mathrm{~V}$ and $\mathrm{E}^{0}$ for $\mathrm{I}_{2} / 2 \mathrm{I}^{-}=\mathbf{0 . 5 3 6} \mathrm{V}$. The favourable redox reaction is
275917
Given the following in E.q. (i) and (ii), claculate the EMF of the cell given in Eq. (iii)
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathbf{C u}(\mathrm{s})+\mathrm{I}^{-} \\
& \mathrm{E}^{0}=-\mathbf{0 . 1 6} \\
& \mathrm{Zn}^{2+} \text { (aq) }+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s})
\end{aligned}$
$\begin{aligned}
& \mathrm{CuI}(\mathrm{s})+\mathrm{e}^{-} \rightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{I}^{-} \\
& \quad \mathrm{E}^0=-0.16 \\
& \mathrm{Zn}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightarrow \mathrm{Zn}(\mathrm{s}) \\
& E^0=-0.76 \\
& \mathrm{Zn}_{\Theta}\left \vert\mathrm{Zn}^{2+}(\mathbf{1 . 0 M})\right \vert\left \vert\mathbf{I}^{-(1.0 M)}\right \vert \underset{\oplus}{\mathrm{CuI} \mid \mathrm{Cu}}
\end{aligned}$