00. Electrode Potential
ELECTROCHEMISTRY

275909 In a galvanic cell the following reaction takes place at $298 \mathrm{~K}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
Given that : $\mathrm{E}^{\mathrm{o}}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{H}^{+}, \mathrm{Cr}^{3+} / \mathrm{Pt}\right)=1.33 \mathrm{~V}$
$\mathrm{E}^{\mathrm{o}}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} / \mathrm{Pt}\right)=\mathbf{0 . 7 7} \mathrm{V}$
The standard e.m.f. of the cell is

1 $(1.33+0.77) \mathrm{V}$
2 $(1.33-0.77) \mathrm{V}$
3 $-(1.33+0.77) \mathrm{V}$
4 $(-1.33+0.77) \mathrm{V}$
ELECTROCHEMISTRY

275910 The standard emf of a galvanic cell involving 2 moles of electrons in its redox reaction is $\mathbf{0 . 5 9}$ $V$. The equilibrium constant for the redox reaction of the cell is

1 $10^{20}$
2 $10^{5}$
3 10
4 $10^{10}$
ELECTROCHEMISTRY

275911 The standard redox potentials for the reactions $\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}$ and $\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}$ are $1.18 \mathrm{~V}$ and $1.51 \mathrm{~V}$ respectively. What is the redox potential for the reaction $\mathrm{Mn}^{3+}+3 \mathrm{e}^{-} \rightarrow$ Mn?

1 $0.33 \mathrm{~V}$
2 $1.69 \mathrm{~V}$
3 $-0.28 \mathrm{~V}$
4 $-0.85 \mathrm{~V}$
5 0.85
ELECTROCHEMISTRY

275912 The standard reduction potential for $\mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Sn}^{2+} / \mathrm{Sn}$ electrodes are -0.44 and $-0.14 \mathrm{~V}$ respectively. For the cell reaction, $\mathrm{Fe}^{2+}+\mathrm{Sn} \rightarrow$ $\mathrm{Fe}+\mathrm{Sn}^{2+}$ the standard emf is

1 $+0.30 \mathrm{~V}$
2 $-0.58 \mathrm{~V}$
3 $+0.58 \mathrm{~V}$
4 $-0.30 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

275909 In a galvanic cell the following reaction takes place at $298 \mathrm{~K}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
Given that : $\mathrm{E}^{\mathrm{o}}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{H}^{+}, \mathrm{Cr}^{3+} / \mathrm{Pt}\right)=1.33 \mathrm{~V}$
$\mathrm{E}^{\mathrm{o}}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} / \mathrm{Pt}\right)=\mathbf{0 . 7 7} \mathrm{V}$
The standard e.m.f. of the cell is

1 $(1.33+0.77) \mathrm{V}$
2 $(1.33-0.77) \mathrm{V}$
3 $-(1.33+0.77) \mathrm{V}$
4 $(-1.33+0.77) \mathrm{V}$
ELECTROCHEMISTRY

275910 The standard emf of a galvanic cell involving 2 moles of electrons in its redox reaction is $\mathbf{0 . 5 9}$ $V$. The equilibrium constant for the redox reaction of the cell is

1 $10^{20}$
2 $10^{5}$
3 10
4 $10^{10}$
ELECTROCHEMISTRY

275911 The standard redox potentials for the reactions $\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}$ and $\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}$ are $1.18 \mathrm{~V}$ and $1.51 \mathrm{~V}$ respectively. What is the redox potential for the reaction $\mathrm{Mn}^{3+}+3 \mathrm{e}^{-} \rightarrow$ Mn?

1 $0.33 \mathrm{~V}$
2 $1.69 \mathrm{~V}$
3 $-0.28 \mathrm{~V}$
4 $-0.85 \mathrm{~V}$
5 0.85
ELECTROCHEMISTRY

275912 The standard reduction potential for $\mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Sn}^{2+} / \mathrm{Sn}$ electrodes are -0.44 and $-0.14 \mathrm{~V}$ respectively. For the cell reaction, $\mathrm{Fe}^{2+}+\mathrm{Sn} \rightarrow$ $\mathrm{Fe}+\mathrm{Sn}^{2+}$ the standard emf is

1 $+0.30 \mathrm{~V}$
2 $-0.58 \mathrm{~V}$
3 $+0.58 \mathrm{~V}$
4 $-0.30 \mathrm{~V}$
ELECTROCHEMISTRY

275909 In a galvanic cell the following reaction takes place at $298 \mathrm{~K}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
Given that : $\mathrm{E}^{\mathrm{o}}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{H}^{+}, \mathrm{Cr}^{3+} / \mathrm{Pt}\right)=1.33 \mathrm{~V}$
$\mathrm{E}^{\mathrm{o}}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} / \mathrm{Pt}\right)=\mathbf{0 . 7 7} \mathrm{V}$
The standard e.m.f. of the cell is

1 $(1.33+0.77) \mathrm{V}$
2 $(1.33-0.77) \mathrm{V}$
3 $-(1.33+0.77) \mathrm{V}$
4 $(-1.33+0.77) \mathrm{V}$
ELECTROCHEMISTRY

275910 The standard emf of a galvanic cell involving 2 moles of electrons in its redox reaction is $\mathbf{0 . 5 9}$ $V$. The equilibrium constant for the redox reaction of the cell is

1 $10^{20}$
2 $10^{5}$
3 10
4 $10^{10}$
ELECTROCHEMISTRY

275911 The standard redox potentials for the reactions $\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}$ and $\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}$ are $1.18 \mathrm{~V}$ and $1.51 \mathrm{~V}$ respectively. What is the redox potential for the reaction $\mathrm{Mn}^{3+}+3 \mathrm{e}^{-} \rightarrow$ Mn?

1 $0.33 \mathrm{~V}$
2 $1.69 \mathrm{~V}$
3 $-0.28 \mathrm{~V}$
4 $-0.85 \mathrm{~V}$
5 0.85
ELECTROCHEMISTRY

275912 The standard reduction potential for $\mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Sn}^{2+} / \mathrm{Sn}$ electrodes are -0.44 and $-0.14 \mathrm{~V}$ respectively. For the cell reaction, $\mathrm{Fe}^{2+}+\mathrm{Sn} \rightarrow$ $\mathrm{Fe}+\mathrm{Sn}^{2+}$ the standard emf is

1 $+0.30 \mathrm{~V}$
2 $-0.58 \mathrm{~V}$
3 $+0.58 \mathrm{~V}$
4 $-0.30 \mathrm{~V}$
ELECTROCHEMISTRY

275909 In a galvanic cell the following reaction takes place at $298 \mathrm{~K}$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+6 \mathrm{Fe}^{2+} \rightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
Given that : $\mathrm{E}^{\mathrm{o}}\left(\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}, \mathrm{H}^{+}, \mathrm{Cr}^{3+} / \mathrm{Pt}\right)=1.33 \mathrm{~V}$
$\mathrm{E}^{\mathrm{o}}\left(\mathrm{Fe}^{3+}, \mathrm{Fe}^{2+} / \mathrm{Pt}\right)=\mathbf{0 . 7 7} \mathrm{V}$
The standard e.m.f. of the cell is

1 $(1.33+0.77) \mathrm{V}$
2 $(1.33-0.77) \mathrm{V}$
3 $-(1.33+0.77) \mathrm{V}$
4 $(-1.33+0.77) \mathrm{V}$
ELECTROCHEMISTRY

275910 The standard emf of a galvanic cell involving 2 moles of electrons in its redox reaction is $\mathbf{0 . 5 9}$ $V$. The equilibrium constant for the redox reaction of the cell is

1 $10^{20}$
2 $10^{5}$
3 10
4 $10^{10}$
ELECTROCHEMISTRY

275911 The standard redox potentials for the reactions $\mathrm{Mn}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}$ and $\mathrm{Mn}^{3+}+\mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}$ are $1.18 \mathrm{~V}$ and $1.51 \mathrm{~V}$ respectively. What is the redox potential for the reaction $\mathrm{Mn}^{3+}+3 \mathrm{e}^{-} \rightarrow$ Mn?

1 $0.33 \mathrm{~V}$
2 $1.69 \mathrm{~V}$
3 $-0.28 \mathrm{~V}$
4 $-0.85 \mathrm{~V}$
5 0.85
ELECTROCHEMISTRY

275912 The standard reduction potential for $\mathrm{Fe}^{2+} / \mathrm{Fe}$ and $\mathrm{Sn}^{2+} / \mathrm{Sn}$ electrodes are -0.44 and $-0.14 \mathrm{~V}$ respectively. For the cell reaction, $\mathrm{Fe}^{2+}+\mathrm{Sn} \rightarrow$ $\mathrm{Fe}+\mathrm{Sn}^{2+}$ the standard emf is

1 $+0.30 \mathrm{~V}$
2 $-0.58 \mathrm{~V}$
3 $+0.58 \mathrm{~V}$
4 $-0.30 \mathrm{~V}$