275830
For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-
275833
What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$
275834
In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$
275837
The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$
275830
For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-
275833
What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$
275834
In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$
275837
The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$
275830
For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-
275833
What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$
275834
In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$
275837
The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$
275830
For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-
275833
What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$
275834
In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$
275837
The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$
275830
For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-
275833
What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$
275834
In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$
275837
The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$