00. Electrode Potential
ELECTROCHEMISTRY

275903 1 M solution each of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{AgNO}_{3}$, $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is electrolysed using Pt-electrodes. The values of standard electrode potentials in volts are
$\begin{aligned}
& \mathrm{Ag}^{+} / \mathrm{Ag}=+0.80 \mathrm{~V}, \mathrm{Cu}^{2+} / \mathrm{Cu}=0.34 \mathrm{~V} \\
& \mathrm{Hg}_{2}^{2+} / 2 \mathrm{Hg}=+0.79 \mathrm{~V}, \mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}
\end{aligned}$
The sequence of deposition of metals on the cathode will be

1 $\mathrm{Mg}, \mathrm{Ag}, \mathrm{Cu}$
2 $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Ag}$
3 $\mathrm{Ag}, \mathrm{Hg}, \mathrm{Cu}$
4 $\mathrm{Cu}, \mathrm{Hg}, \mathrm{Ag}$
ELECTROCHEMISTRY

275947 During the charging of a lead-acid storage battery, the cathode reaction is

1 formation of $\mathrm{PbSO}_{4}$
2 reduction of $\mathrm{Pb}^{2+}$ to $\mathrm{Pb}$
3 formation of $\mathrm{PbO}_{2}$
4 oxidation of $\mathrm{Pb}$ to $\mathrm{Pb}^{2+}$
ELECTROCHEMISTRY

275904 The equilibrium constant of the reaction;
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
$E^{\circ}=0.46 \mathrm{~V}$ at $298 \mathrm{~K}$

1 $2.4 \times 10^{10}$
2 $2.0 \times 10^{10}$
3 $4.0 \times 10^{10}$
4 $4.0 \times 10^{15}$
ELECTROCHEMISTRY

275948 If $0.1 \mathrm{M}$ solutions of each electrolyte are taken and if all electrolytes are completely dissociated, then whose boiling point will be highest?

1 Glucose
2 $\mathrm{KCl}$
3 $\mathrm{BaCl}_{2}$
4 $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
ELECTROCHEMISTRY

275903 1 M solution each of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{AgNO}_{3}$, $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is electrolysed using Pt-electrodes. The values of standard electrode potentials in volts are
$\begin{aligned}
& \mathrm{Ag}^{+} / \mathrm{Ag}=+0.80 \mathrm{~V}, \mathrm{Cu}^{2+} / \mathrm{Cu}=0.34 \mathrm{~V} \\
& \mathrm{Hg}_{2}^{2+} / 2 \mathrm{Hg}=+0.79 \mathrm{~V}, \mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}
\end{aligned}$
The sequence of deposition of metals on the cathode will be

1 $\mathrm{Mg}, \mathrm{Ag}, \mathrm{Cu}$
2 $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Ag}$
3 $\mathrm{Ag}, \mathrm{Hg}, \mathrm{Cu}$
4 $\mathrm{Cu}, \mathrm{Hg}, \mathrm{Ag}$
ELECTROCHEMISTRY

275947 During the charging of a lead-acid storage battery, the cathode reaction is

1 formation of $\mathrm{PbSO}_{4}$
2 reduction of $\mathrm{Pb}^{2+}$ to $\mathrm{Pb}$
3 formation of $\mathrm{PbO}_{2}$
4 oxidation of $\mathrm{Pb}$ to $\mathrm{Pb}^{2+}$
ELECTROCHEMISTRY

275904 The equilibrium constant of the reaction;
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
$E^{\circ}=0.46 \mathrm{~V}$ at $298 \mathrm{~K}$

1 $2.4 \times 10^{10}$
2 $2.0 \times 10^{10}$
3 $4.0 \times 10^{10}$
4 $4.0 \times 10^{15}$
ELECTROCHEMISTRY

275948 If $0.1 \mathrm{M}$ solutions of each electrolyte are taken and if all electrolytes are completely dissociated, then whose boiling point will be highest?

1 Glucose
2 $\mathrm{KCl}$
3 $\mathrm{BaCl}_{2}$
4 $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
ELECTROCHEMISTRY

275903 1 M solution each of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{AgNO}_{3}$, $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is electrolysed using Pt-electrodes. The values of standard electrode potentials in volts are
$\begin{aligned}
& \mathrm{Ag}^{+} / \mathrm{Ag}=+0.80 \mathrm{~V}, \mathrm{Cu}^{2+} / \mathrm{Cu}=0.34 \mathrm{~V} \\
& \mathrm{Hg}_{2}^{2+} / 2 \mathrm{Hg}=+0.79 \mathrm{~V}, \mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}
\end{aligned}$
The sequence of deposition of metals on the cathode will be

1 $\mathrm{Mg}, \mathrm{Ag}, \mathrm{Cu}$
2 $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Ag}$
3 $\mathrm{Ag}, \mathrm{Hg}, \mathrm{Cu}$
4 $\mathrm{Cu}, \mathrm{Hg}, \mathrm{Ag}$
ELECTROCHEMISTRY

275947 During the charging of a lead-acid storage battery, the cathode reaction is

1 formation of $\mathrm{PbSO}_{4}$
2 reduction of $\mathrm{Pb}^{2+}$ to $\mathrm{Pb}$
3 formation of $\mathrm{PbO}_{2}$
4 oxidation of $\mathrm{Pb}$ to $\mathrm{Pb}^{2+}$
ELECTROCHEMISTRY

275904 The equilibrium constant of the reaction;
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
$E^{\circ}=0.46 \mathrm{~V}$ at $298 \mathrm{~K}$

1 $2.4 \times 10^{10}$
2 $2.0 \times 10^{10}$
3 $4.0 \times 10^{10}$
4 $4.0 \times 10^{15}$
ELECTROCHEMISTRY

275948 If $0.1 \mathrm{M}$ solutions of each electrolyte are taken and if all electrolytes are completely dissociated, then whose boiling point will be highest?

1 Glucose
2 $\mathrm{KCl}$
3 $\mathrm{BaCl}_{2}$
4 $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
ELECTROCHEMISTRY

275903 1 M solution each of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}, \mathrm{AgNO}_{3}$, $\mathrm{Hg}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ is electrolysed using Pt-electrodes. The values of standard electrode potentials in volts are
$\begin{aligned}
& \mathrm{Ag}^{+} / \mathrm{Ag}=+0.80 \mathrm{~V}, \mathrm{Cu}^{2+} / \mathrm{Cu}=0.34 \mathrm{~V} \\
& \mathrm{Hg}_{2}^{2+} / 2 \mathrm{Hg}=+0.79 \mathrm{~V}, \mathrm{Mg}^{2+} / \mathrm{Mg}=-2.37 \mathrm{~V}
\end{aligned}$
The sequence of deposition of metals on the cathode will be

1 $\mathrm{Mg}, \mathrm{Ag}, \mathrm{Cu}$
2 $\mathrm{Mg}, \mathrm{Cu}, \mathrm{Ag}$
3 $\mathrm{Ag}, \mathrm{Hg}, \mathrm{Cu}$
4 $\mathrm{Cu}, \mathrm{Hg}, \mathrm{Ag}$
ELECTROCHEMISTRY

275947 During the charging of a lead-acid storage battery, the cathode reaction is

1 formation of $\mathrm{PbSO}_{4}$
2 reduction of $\mathrm{Pb}^{2+}$ to $\mathrm{Pb}$
3 formation of $\mathrm{PbO}_{2}$
4 oxidation of $\mathrm{Pb}$ to $\mathrm{Pb}^{2+}$
ELECTROCHEMISTRY

275904 The equilibrium constant of the reaction;
$\mathrm{Cu}(\mathrm{s})+2 \mathrm{Ag}^{+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(\mathrm{s})$
$E^{\circ}=0.46 \mathrm{~V}$ at $298 \mathrm{~K}$

1 $2.4 \times 10^{10}$
2 $2.0 \times 10^{10}$
3 $4.0 \times 10^{10}$
4 $4.0 \times 10^{15}$
ELECTROCHEMISTRY

275948 If $0.1 \mathrm{M}$ solutions of each electrolyte are taken and if all electrolytes are completely dissociated, then whose boiling point will be highest?

1 Glucose
2 $\mathrm{KCl}$
3 $\mathrm{BaCl}_{2}$
4 $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$