00. Electrode Potential
ELECTROCHEMISTRY

275830 For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-

1 10
2 0.01
3 0.1
4 100
ELECTROCHEMISTRY

275833 What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$

1 $0.059 \mathrm{~V}$
2 $0.188 \mathrm{~V}$
3 $0.177 \mathrm{~V}$
4 $0.000 \mathrm{~V}$
ELECTROCHEMISTRY

275834 In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$

1 $\mathrm{Ag}$
2 $\mathrm{Ni}$
3 $\mathrm{Fe}$
4 $\mathrm{Al}$
ELECTROCHEMISTRY

275835 How long (approximate) should water be electrolysed by passing through 100 amperes current so that oxygen released can completely burn $27.66 \mathrm{~g}$ of diborane?
(Atomic weight of $B=\mathbf{1 0 . 8} \mu$ )

1 6.4 hours
2 0.8 hours
3 3.2 hours
4 1.6 hours
ELECTROCHEMISTRY

275837 The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$

1 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
2 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
3 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$
4 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$
ELECTROCHEMISTRY

275830 For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-

1 10
2 0.01
3 0.1
4 100
ELECTROCHEMISTRY

275833 What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$

1 $0.059 \mathrm{~V}$
2 $0.188 \mathrm{~V}$
3 $0.177 \mathrm{~V}$
4 $0.000 \mathrm{~V}$
ELECTROCHEMISTRY

275834 In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$

1 $\mathrm{Ag}$
2 $\mathrm{Ni}$
3 $\mathrm{Fe}$
4 $\mathrm{Al}$
ELECTROCHEMISTRY

275835 How long (approximate) should water be electrolysed by passing through 100 amperes current so that oxygen released can completely burn $27.66 \mathrm{~g}$ of diborane?
(Atomic weight of $B=\mathbf{1 0 . 8} \mu$ )

1 6.4 hours
2 0.8 hours
3 3.2 hours
4 1.6 hours
ELECTROCHEMISTRY

275837 The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$

1 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
2 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
3 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$
4 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$
ELECTROCHEMISTRY

275830 For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-

1 10
2 0.01
3 0.1
4 100
ELECTROCHEMISTRY

275833 What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$

1 $0.059 \mathrm{~V}$
2 $0.188 \mathrm{~V}$
3 $0.177 \mathrm{~V}$
4 $0.000 \mathrm{~V}$
ELECTROCHEMISTRY

275834 In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$

1 $\mathrm{Ag}$
2 $\mathrm{Ni}$
3 $\mathrm{Fe}$
4 $\mathrm{Al}$
ELECTROCHEMISTRY

275835 How long (approximate) should water be electrolysed by passing through 100 amperes current so that oxygen released can completely burn $27.66 \mathrm{~g}$ of diborane?
(Atomic weight of $B=\mathbf{1 0 . 8} \mu$ )

1 6.4 hours
2 0.8 hours
3 3.2 hours
4 1.6 hours
ELECTROCHEMISTRY

275837 The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$

1 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
2 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
3 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$
4 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ELECTROCHEMISTRY

275830 For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-

1 10
2 0.01
3 0.1
4 100
ELECTROCHEMISTRY

275833 What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$

1 $0.059 \mathrm{~V}$
2 $0.188 \mathrm{~V}$
3 $0.177 \mathrm{~V}$
4 $0.000 \mathrm{~V}$
ELECTROCHEMISTRY

275834 In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$

1 $\mathrm{Ag}$
2 $\mathrm{Ni}$
3 $\mathrm{Fe}$
4 $\mathrm{Al}$
ELECTROCHEMISTRY

275835 How long (approximate) should water be electrolysed by passing through 100 amperes current so that oxygen released can completely burn $27.66 \mathrm{~g}$ of diborane?
(Atomic weight of $B=\mathbf{1 0 . 8} \mu$ )

1 6.4 hours
2 0.8 hours
3 3.2 hours
4 1.6 hours
ELECTROCHEMISTRY

275837 The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$

1 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
2 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
3 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$
4 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$
ELECTROCHEMISTRY

275830 For the following, cell $\mathrm{Zn}\left \vert\mathbf{Z n}^{2+} \ \vert \mathbf{C d}^{2+}\right \vert \mathrm{Cd}$
$E_{\text {cell }}=0.30 \mathrm{~V}, E_{\text {cell }}^{0}=0.36 \mathrm{~V}$, then the value of $\frac{\left[\mathbf{C d}^{2+}\right]}{\left[\mathbf{Z n}^{2+}\right]}$ is-

1 10
2 0.01
3 0.1
4 100
ELECTROCHEMISTRY

275833 What will be the oxidation potential for the following hydrogen half cell at 1 bar pressure and $25^{\circ} \mathrm{C}$ temperature?
$\mathbf{P t}\left \vert\begin{array}{ \vertc \vert}\mathbf{H}_{2(\mathrm{~g})} \\ \text { 1bar }\end{array}\right \vert \mathbf{H C l}_{(\mathrm{aq})} \mathbf{p H}=\mathbf{3}$

1 $0.059 \mathrm{~V}$
2 $0.188 \mathrm{~V}$
3 $0.177 \mathrm{~V}$
4 $0.000 \mathrm{~V}$
ELECTROCHEMISTRY

275834 In which metal container, the aqueous solution of $\mathrm{CuSO}_{4}$ can be stored?
$\mathrm{E}_{\mathrm{Cu}^{2} / \mathrm{Cu}}^{0}=\mathbf{0 . 3 4} \mathrm{V}$
$\mathrm{E}_{\mathrm{Fe} / \mathrm{Fe}^{2+}}^{0}=0.44 \mathrm{~V}, \mathrm{E}_{\mathrm{Al} / \mathrm{Al}^{3+}}^{0}=1.66 \mathrm{~V}$
$\mathrm{E}_{\mathrm{N} / / \mathrm{Ni}^{2+}}^{0}=0.25 \mathrm{~V}, \mathrm{E}_{\mathrm{Ag}^{-} / \mathrm{Ag}}^{0}=\mathbf{0 . 8 0} \mathrm{V}$

1 $\mathrm{Ag}$
2 $\mathrm{Ni}$
3 $\mathrm{Fe}$
4 $\mathrm{Al}$
ELECTROCHEMISTRY

275835 How long (approximate) should water be electrolysed by passing through 100 amperes current so that oxygen released can completely burn $27.66 \mathrm{~g}$ of diborane?
(Atomic weight of $B=\mathbf{1 0 . 8} \mu$ )

1 6.4 hours
2 0.8 hours
3 3.2 hours
4 1.6 hours
ELECTROCHEMISTRY

275837 The standard emf of the cell $\left(\mathbf{E}_{\text {cell }}^{0}\right)$ and equilibrium constant $\left(K_{\mathrm{eq}}\right)$ of the following reaction,
$\mathrm{Cd}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Cd}\left(\mathrm{NH}_{3}\right)_{4}^{2+}$ at $298 \mathrm{Kis}$

1 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
2 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=1.26 \times 10^{7}$
3 $\mathrm{E}_{\text {cell }}^{\circ}=1.0 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$
4 $\mathrm{E}_{\text {cell }}^{\circ}=0.21 \mathrm{~V} ; \mathrm{K}_{\text {eq }}=6.60 \times 10^{33}$