03. Osmosis and Osmotic Pressure of the Solution
SOLUTIONS

277446 At $37^{\circ} \mathrm{C}$ osmotic pressure of human blood is 7.65 atm. Tell how much glucose can be used in 1 lit of water for intravenous injection so that osmotic pressure of this glucose solution becomes equal to osmotic pressure of human blood.

1 $22.2 \mathrm{gm}$
2 $54.2 \mathrm{gm}$
3 $15 \mathrm{gm}$
4 $59.8 \mathrm{gm}$
SOLUTIONS

277448 The osmotic pressure of a dilute solution of an ionic compound $\mathrm{XY}$ in water is four times that of a solution of $0.01 \mathrm{M} \mathrm{BaCl}_{2}$ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of $X Y$ (in mol $\mathrm{L}^{-1}$ ) in solution is

1 $4 \times 10^{-2}$
2 $16 \times 10^{-4}$
3 $4 \times 10^{-4}$
4 $6 \times 10^{-2}$
SOLUTIONS

277449 Molal depression constant for a solvent is $4.0 \mathrm{~K}$ $\mathrm{kg} \mathrm{mol}{ }^{-1}$. The depression in the freezing point of the solvent for $0.03 \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is (Assume complete dissociation of the electrolyte)

1 $0.18 \mathrm{~K}$
2 $0.36 \mathrm{~K}$
3 $0.12 \mathrm{~K}$
4 $0.24 \mathrm{~K}$
SOLUTIONS

277450 A solution is prepared by dissolving $0.6 \mathrm{~g}$ of urea (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$ ) and $1.8 \mathrm{~g}$ of glucose (molar mass $\left.=180 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ in $100 \mathrm{~mL}$ of water at $27^{\circ} \mathrm{C}$. The osmotic pressure of the solution is $\left(R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$

1 $8.2 \mathrm{~atm}$
2 $2.46 \mathrm{~atm}$
3 $4.92 \mathrm{~atm}$
4 $1.64 \mathrm{~atm}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
SOLUTIONS

277446 At $37^{\circ} \mathrm{C}$ osmotic pressure of human blood is 7.65 atm. Tell how much glucose can be used in 1 lit of water for intravenous injection so that osmotic pressure of this glucose solution becomes equal to osmotic pressure of human blood.

1 $22.2 \mathrm{gm}$
2 $54.2 \mathrm{gm}$
3 $15 \mathrm{gm}$
4 $59.8 \mathrm{gm}$
SOLUTIONS

277448 The osmotic pressure of a dilute solution of an ionic compound $\mathrm{XY}$ in water is four times that of a solution of $0.01 \mathrm{M} \mathrm{BaCl}_{2}$ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of $X Y$ (in mol $\mathrm{L}^{-1}$ ) in solution is

1 $4 \times 10^{-2}$
2 $16 \times 10^{-4}$
3 $4 \times 10^{-4}$
4 $6 \times 10^{-2}$
SOLUTIONS

277449 Molal depression constant for a solvent is $4.0 \mathrm{~K}$ $\mathrm{kg} \mathrm{mol}{ }^{-1}$. The depression in the freezing point of the solvent for $0.03 \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is (Assume complete dissociation of the electrolyte)

1 $0.18 \mathrm{~K}$
2 $0.36 \mathrm{~K}$
3 $0.12 \mathrm{~K}$
4 $0.24 \mathrm{~K}$
SOLUTIONS

277450 A solution is prepared by dissolving $0.6 \mathrm{~g}$ of urea (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$ ) and $1.8 \mathrm{~g}$ of glucose (molar mass $\left.=180 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ in $100 \mathrm{~mL}$ of water at $27^{\circ} \mathrm{C}$. The osmotic pressure of the solution is $\left(R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$

1 $8.2 \mathrm{~atm}$
2 $2.46 \mathrm{~atm}$
3 $4.92 \mathrm{~atm}$
4 $1.64 \mathrm{~atm}$
SOLUTIONS

277446 At $37^{\circ} \mathrm{C}$ osmotic pressure of human blood is 7.65 atm. Tell how much glucose can be used in 1 lit of water for intravenous injection so that osmotic pressure of this glucose solution becomes equal to osmotic pressure of human blood.

1 $22.2 \mathrm{gm}$
2 $54.2 \mathrm{gm}$
3 $15 \mathrm{gm}$
4 $59.8 \mathrm{gm}$
SOLUTIONS

277448 The osmotic pressure of a dilute solution of an ionic compound $\mathrm{XY}$ in water is four times that of a solution of $0.01 \mathrm{M} \mathrm{BaCl}_{2}$ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of $X Y$ (in mol $\mathrm{L}^{-1}$ ) in solution is

1 $4 \times 10^{-2}$
2 $16 \times 10^{-4}$
3 $4 \times 10^{-4}$
4 $6 \times 10^{-2}$
SOLUTIONS

277449 Molal depression constant for a solvent is $4.0 \mathrm{~K}$ $\mathrm{kg} \mathrm{mol}{ }^{-1}$. The depression in the freezing point of the solvent for $0.03 \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is (Assume complete dissociation of the electrolyte)

1 $0.18 \mathrm{~K}$
2 $0.36 \mathrm{~K}$
3 $0.12 \mathrm{~K}$
4 $0.24 \mathrm{~K}$
SOLUTIONS

277450 A solution is prepared by dissolving $0.6 \mathrm{~g}$ of urea (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$ ) and $1.8 \mathrm{~g}$ of glucose (molar mass $\left.=180 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ in $100 \mathrm{~mL}$ of water at $27^{\circ} \mathrm{C}$. The osmotic pressure of the solution is $\left(R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$

1 $8.2 \mathrm{~atm}$
2 $2.46 \mathrm{~atm}$
3 $4.92 \mathrm{~atm}$
4 $1.64 \mathrm{~atm}$
SOLUTIONS

277446 At $37^{\circ} \mathrm{C}$ osmotic pressure of human blood is 7.65 atm. Tell how much glucose can be used in 1 lit of water for intravenous injection so that osmotic pressure of this glucose solution becomes equal to osmotic pressure of human blood.

1 $22.2 \mathrm{gm}$
2 $54.2 \mathrm{gm}$
3 $15 \mathrm{gm}$
4 $59.8 \mathrm{gm}$
SOLUTIONS

277448 The osmotic pressure of a dilute solution of an ionic compound $\mathrm{XY}$ in water is four times that of a solution of $0.01 \mathrm{M} \mathrm{BaCl}_{2}$ in water. Assuming complete dissociation of the given ionic compounds in water, the concentration of $X Y$ (in mol $\mathrm{L}^{-1}$ ) in solution is

1 $4 \times 10^{-2}$
2 $16 \times 10^{-4}$
3 $4 \times 10^{-4}$
4 $6 \times 10^{-2}$
SOLUTIONS

277449 Molal depression constant for a solvent is $4.0 \mathrm{~K}$ $\mathrm{kg} \mathrm{mol}{ }^{-1}$. The depression in the freezing point of the solvent for $0.03 \mathrm{~mol} \mathrm{~kg}{ }^{-1}$ solution of $\mathrm{K}_{2} \mathrm{SO}_{4}$ is (Assume complete dissociation of the electrolyte)

1 $0.18 \mathrm{~K}$
2 $0.36 \mathrm{~K}$
3 $0.12 \mathrm{~K}$
4 $0.24 \mathrm{~K}$
SOLUTIONS

277450 A solution is prepared by dissolving $0.6 \mathrm{~g}$ of urea (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$ ) and $1.8 \mathrm{~g}$ of glucose (molar mass $\left.=180 \mathrm{~g} \mathrm{~mol}^{-1}\right)$ in $100 \mathrm{~mL}$ of water at $27^{\circ} \mathrm{C}$. The osmotic pressure of the solution is $\left(R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \mathrm{~mol}^{-1}\right)$

1 $8.2 \mathrm{~atm}$
2 $2.46 \mathrm{~atm}$
3 $4.92 \mathrm{~atm}$
4 $1.64 \mathrm{~atm}$