277456
$1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?
277457
The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is : $\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
Explanation:
Given, From formula, $\Pi=\mathrm{CRT}$ $=0.2 \times 0.082 \times 300$ $=4.92 \mathrm{~atm}$ Temperature, $\mathrm{T}=300 \mathrm{~K}$ $\mathrm{C}=$ molar concentration of solute $=0.2$ $\mathrm{R}=$ ideal gas constant $=0.082$
Manipal-2017
SOLUTIONS
277458
The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )
277461
$1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be
277462
At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)
1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$
Explanation:
$\text { Slope }=291 \mathrm{R}$ $291 \mathrm{R}=\mathrm{RT}$ A plot of osmotic pressure vs concentration will be linear with slope $=\mathrm{RT}$ As $\quad \Pi=$ CRT So, $\begin{aligned} & \mathrm{RT}=291 \mathrm{R} \\ & \mathrm{T}=291 \mathrm{~K} \\ & =(291-273)^{\circ} \mathrm{C} \\ & =18^{\circ} \mathrm{C} \end{aligned}$
277456
$1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?
277457
The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is : $\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
Explanation:
Given, From formula, $\Pi=\mathrm{CRT}$ $=0.2 \times 0.082 \times 300$ $=4.92 \mathrm{~atm}$ Temperature, $\mathrm{T}=300 \mathrm{~K}$ $\mathrm{C}=$ molar concentration of solute $=0.2$ $\mathrm{R}=$ ideal gas constant $=0.082$
Manipal-2017
SOLUTIONS
277458
The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )
277461
$1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be
277462
At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)
1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$
Explanation:
$\text { Slope }=291 \mathrm{R}$ $291 \mathrm{R}=\mathrm{RT}$ A plot of osmotic pressure vs concentration will be linear with slope $=\mathrm{RT}$ As $\quad \Pi=$ CRT So, $\begin{aligned} & \mathrm{RT}=291 \mathrm{R} \\ & \mathrm{T}=291 \mathrm{~K} \\ & =(291-273)^{\circ} \mathrm{C} \\ & =18^{\circ} \mathrm{C} \end{aligned}$
277456
$1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?
277457
The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is : $\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
Explanation:
Given, From formula, $\Pi=\mathrm{CRT}$ $=0.2 \times 0.082 \times 300$ $=4.92 \mathrm{~atm}$ Temperature, $\mathrm{T}=300 \mathrm{~K}$ $\mathrm{C}=$ molar concentration of solute $=0.2$ $\mathrm{R}=$ ideal gas constant $=0.082$
Manipal-2017
SOLUTIONS
277458
The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )
277461
$1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be
277462
At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)
1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$
Explanation:
$\text { Slope }=291 \mathrm{R}$ $291 \mathrm{R}=\mathrm{RT}$ A plot of osmotic pressure vs concentration will be linear with slope $=\mathrm{RT}$ As $\quad \Pi=$ CRT So, $\begin{aligned} & \mathrm{RT}=291 \mathrm{R} \\ & \mathrm{T}=291 \mathrm{~K} \\ & =(291-273)^{\circ} \mathrm{C} \\ & =18^{\circ} \mathrm{C} \end{aligned}$
277456
$1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?
277457
The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is : $\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
Explanation:
Given, From formula, $\Pi=\mathrm{CRT}$ $=0.2 \times 0.082 \times 300$ $=4.92 \mathrm{~atm}$ Temperature, $\mathrm{T}=300 \mathrm{~K}$ $\mathrm{C}=$ molar concentration of solute $=0.2$ $\mathrm{R}=$ ideal gas constant $=0.082$
Manipal-2017
SOLUTIONS
277458
The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )
277461
$1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be
277462
At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)
1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$
Explanation:
$\text { Slope }=291 \mathrm{R}$ $291 \mathrm{R}=\mathrm{RT}$ A plot of osmotic pressure vs concentration will be linear with slope $=\mathrm{RT}$ As $\quad \Pi=$ CRT So, $\begin{aligned} & \mathrm{RT}=291 \mathrm{R} \\ & \mathrm{T}=291 \mathrm{~K} \\ & =(291-273)^{\circ} \mathrm{C} \\ & =18^{\circ} \mathrm{C} \end{aligned}$
277456
$1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?
277457
The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is : $\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$
1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
Explanation:
Given, From formula, $\Pi=\mathrm{CRT}$ $=0.2 \times 0.082 \times 300$ $=4.92 \mathrm{~atm}$ Temperature, $\mathrm{T}=300 \mathrm{~K}$ $\mathrm{C}=$ molar concentration of solute $=0.2$ $\mathrm{R}=$ ideal gas constant $=0.082$
Manipal-2017
SOLUTIONS
277458
The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )
277461
$1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be
277462
At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)
1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$
Explanation:
$\text { Slope }=291 \mathrm{R}$ $291 \mathrm{R}=\mathrm{RT}$ A plot of osmotic pressure vs concentration will be linear with slope $=\mathrm{RT}$ As $\quad \Pi=$ CRT So, $\begin{aligned} & \mathrm{RT}=291 \mathrm{R} \\ & \mathrm{T}=291 \mathrm{~K} \\ & =(291-273)^{\circ} \mathrm{C} \\ & =18^{\circ} \mathrm{C} \end{aligned}$