03. Osmosis and Osmotic Pressure of the Solution
SOLUTIONS

277456 $1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?

1 0.78
2 0.90
3 0.50
4 19.4
SOLUTIONS

277457 The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is :
$\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$

1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
SOLUTIONS

277458 The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )

1 $2.40 \mathrm{~atm}$
2 $3.6 \mathrm{~atm}$
3 $24 \mathrm{~atm}$
4 $0.0024 \mathrm{~atm}$
SOLUTIONS

277461 $1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be

1 $3.2 \mathrm{~atm}$
2 $5.824 \mathrm{~atm}$
3 $4.0 \mathrm{~atm}$
4 $6.0 \mathrm{~atm}$
SOLUTIONS

277462 At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)

1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$
SOLUTIONS

277456 $1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?

1 0.78
2 0.90
3 0.50
4 19.4
SOLUTIONS

277457 The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is :
$\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$

1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
SOLUTIONS

277458 The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )

1 $2.40 \mathrm{~atm}$
2 $3.6 \mathrm{~atm}$
3 $24 \mathrm{~atm}$
4 $0.0024 \mathrm{~atm}$
SOLUTIONS

277461 $1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be

1 $3.2 \mathrm{~atm}$
2 $5.824 \mathrm{~atm}$
3 $4.0 \mathrm{~atm}$
4 $6.0 \mathrm{~atm}$
SOLUTIONS

277462 At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)

1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$
SOLUTIONS

277456 $1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?

1 0.78
2 0.90
3 0.50
4 19.4
SOLUTIONS

277457 The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is :
$\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$

1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
SOLUTIONS

277458 The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )

1 $2.40 \mathrm{~atm}$
2 $3.6 \mathrm{~atm}$
3 $24 \mathrm{~atm}$
4 $0.0024 \mathrm{~atm}$
SOLUTIONS

277461 $1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be

1 $3.2 \mathrm{~atm}$
2 $5.824 \mathrm{~atm}$
3 $4.0 \mathrm{~atm}$
4 $6.0 \mathrm{~atm}$
SOLUTIONS

277462 At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)

1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$
SOLUTIONS

277456 $1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?

1 0.78
2 0.90
3 0.50
4 19.4
SOLUTIONS

277457 The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is :
$\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$

1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
SOLUTIONS

277458 The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )

1 $2.40 \mathrm{~atm}$
2 $3.6 \mathrm{~atm}$
3 $24 \mathrm{~atm}$
4 $0.0024 \mathrm{~atm}$
SOLUTIONS

277461 $1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be

1 $3.2 \mathrm{~atm}$
2 $5.824 \mathrm{~atm}$
3 $4.0 \mathrm{~atm}$
4 $6.0 \mathrm{~atm}$
SOLUTIONS

277462 At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)

1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$
SOLUTIONS

277456 $1 \mathrm{~g}$ of polymer having molar mass 1,60,000 $\mathrm{g}$ dissolves in $800 \mathrm{~mL}$ water, So calculate osmotic pressure in Pascal at $27^{\circ} \mathrm{C}$ ?

1 0.78
2 0.90
3 0.50
4 19.4
SOLUTIONS

277457 The osmotic pressure of 0.2 molar solution of urea at $300 \mathrm{~K}$ is :
$\left(\mathrm{R}=\mathbf{0 . 0 8 2} \mathrm{L} \mathrm{atm} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right)$

1 $4.92 \mathrm{~atm}$
2 $1 \mathrm{~atm}$
3 $0.25 \mathrm{~atm}$
4 $27 \mathrm{~atm}$
SOLUTIONS

277458 The osmotic pressure of solution containing $34.2 \mathrm{~g}$ of cane sugar (molar mass $=342 \mathrm{~g} \mathrm{~mol}^{-1}$ ) in $1 \mathrm{~L}$ of solution at $20^{\circ} \mathrm{C}$ is (Given $R=0.082 \mathrm{~L}$ $\operatorname{atm~K} \mathrm{mol}^{-1}$ )

1 $2.40 \mathrm{~atm}$
2 $3.6 \mathrm{~atm}$
3 $24 \mathrm{~atm}$
4 $0.0024 \mathrm{~atm}$
SOLUTIONS

277461 $1 \%(\mathrm{w} / \mathrm{v})$ solutions of $\mathrm{KCl}$ is dissociated to the extent of $82 \%$. The osmotic pressure at $300 \mathrm{~K}$ will be

1 $3.2 \mathrm{~atm}$
2 $5.824 \mathrm{~atm}$
3 $4.0 \mathrm{~atm}$
4 $6.0 \mathrm{~atm}$
SOLUTIONS

277462 At a certain temperature, the value of the slope of the plot of osmotic pressure ( $\Pi$ ) against concentration $\left(C\right.$ in mol $L^{-1}$ ) of a certain polymer solution is $291 \mathrm{R}$. The temperature at which osmotic pressure is measured, is ( $R$ is gas constant)

1 $271^{\circ} \mathrm{C}$
2 $18^{\circ} \mathrm{C}$
3 $564 \mathrm{~K}$
4 $18 \mathrm{~K}$