04. Hydrogen Ion Concentration - pH Scale
Ionic Equilibrium

229808 The dissociation constant of a weak base is $1 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. The $\mathrm{pH}$ of its $0.1 \mathrm{M}$ solution at the same temperature will be

1 11
2 3
3 6
4 13
Ionic Equilibrium

229809 The $\mathrm{pH}$ of a solution of $\mathrm{NaOH}$ is 12. The mass of $\mathrm{NaOH}$ present in $500 \mathrm{~mL}$ of the solution is

1 $400 \mathrm{mg}$
2 $200 \mathrm{mg}$
3 $20 \mathrm{mg}$
4 $40 \mathrm{mg}$
Ionic Equilibrium

229810 The $\mathrm{pOH}$ of $0.0005 \mathrm{M}$ sulphuric acid is

1 5
2 3
3 11
4 12
Ionic Equilibrium

229811 The $\mathrm{pH}$ of $\mathrm{HCl}$ is 5 . If $10 \mathrm{~mL}$ of this solution is diluted to $100 \mathrm{~mL}$, the $\mathrm{pH}$ of the resultant solution is

1 5.1
2 6.9
3 11
4 12
Ionic Equilibrium

229812 The $\mathrm{pH}$ of a mixture of $10 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4, 5$ $\mathrm{ml}$ of $0.2 \mathrm{M} \mathrm{HCl}$ and $5 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_2$ is

1 1
2 0.5
3 0
4 1.5
Ionic Equilibrium

229808 The dissociation constant of a weak base is $1 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. The $\mathrm{pH}$ of its $0.1 \mathrm{M}$ solution at the same temperature will be

1 11
2 3
3 6
4 13
Ionic Equilibrium

229809 The $\mathrm{pH}$ of a solution of $\mathrm{NaOH}$ is 12. The mass of $\mathrm{NaOH}$ present in $500 \mathrm{~mL}$ of the solution is

1 $400 \mathrm{mg}$
2 $200 \mathrm{mg}$
3 $20 \mathrm{mg}$
4 $40 \mathrm{mg}$
Ionic Equilibrium

229810 The $\mathrm{pOH}$ of $0.0005 \mathrm{M}$ sulphuric acid is

1 5
2 3
3 11
4 12
Ionic Equilibrium

229811 The $\mathrm{pH}$ of $\mathrm{HCl}$ is 5 . If $10 \mathrm{~mL}$ of this solution is diluted to $100 \mathrm{~mL}$, the $\mathrm{pH}$ of the resultant solution is

1 5.1
2 6.9
3 11
4 12
Ionic Equilibrium

229812 The $\mathrm{pH}$ of a mixture of $10 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4, 5$ $\mathrm{ml}$ of $0.2 \mathrm{M} \mathrm{HCl}$ and $5 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_2$ is

1 1
2 0.5
3 0
4 1.5
Ionic Equilibrium

229808 The dissociation constant of a weak base is $1 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. The $\mathrm{pH}$ of its $0.1 \mathrm{M}$ solution at the same temperature will be

1 11
2 3
3 6
4 13
Ionic Equilibrium

229809 The $\mathrm{pH}$ of a solution of $\mathrm{NaOH}$ is 12. The mass of $\mathrm{NaOH}$ present in $500 \mathrm{~mL}$ of the solution is

1 $400 \mathrm{mg}$
2 $200 \mathrm{mg}$
3 $20 \mathrm{mg}$
4 $40 \mathrm{mg}$
Ionic Equilibrium

229810 The $\mathrm{pOH}$ of $0.0005 \mathrm{M}$ sulphuric acid is

1 5
2 3
3 11
4 12
Ionic Equilibrium

229811 The $\mathrm{pH}$ of $\mathrm{HCl}$ is 5 . If $10 \mathrm{~mL}$ of this solution is diluted to $100 \mathrm{~mL}$, the $\mathrm{pH}$ of the resultant solution is

1 5.1
2 6.9
3 11
4 12
Ionic Equilibrium

229812 The $\mathrm{pH}$ of a mixture of $10 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4, 5$ $\mathrm{ml}$ of $0.2 \mathrm{M} \mathrm{HCl}$ and $5 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_2$ is

1 1
2 0.5
3 0
4 1.5
Ionic Equilibrium

229808 The dissociation constant of a weak base is $1 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. The $\mathrm{pH}$ of its $0.1 \mathrm{M}$ solution at the same temperature will be

1 11
2 3
3 6
4 13
Ionic Equilibrium

229809 The $\mathrm{pH}$ of a solution of $\mathrm{NaOH}$ is 12. The mass of $\mathrm{NaOH}$ present in $500 \mathrm{~mL}$ of the solution is

1 $400 \mathrm{mg}$
2 $200 \mathrm{mg}$
3 $20 \mathrm{mg}$
4 $40 \mathrm{mg}$
Ionic Equilibrium

229810 The $\mathrm{pOH}$ of $0.0005 \mathrm{M}$ sulphuric acid is

1 5
2 3
3 11
4 12
Ionic Equilibrium

229811 The $\mathrm{pH}$ of $\mathrm{HCl}$ is 5 . If $10 \mathrm{~mL}$ of this solution is diluted to $100 \mathrm{~mL}$, the $\mathrm{pH}$ of the resultant solution is

1 5.1
2 6.9
3 11
4 12
Ionic Equilibrium

229812 The $\mathrm{pH}$ of a mixture of $10 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4, 5$ $\mathrm{ml}$ of $0.2 \mathrm{M} \mathrm{HCl}$ and $5 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_2$ is

1 1
2 0.5
3 0
4 1.5
Ionic Equilibrium

229808 The dissociation constant of a weak base is $1 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$. The $\mathrm{pH}$ of its $0.1 \mathrm{M}$ solution at the same temperature will be

1 11
2 3
3 6
4 13
Ionic Equilibrium

229809 The $\mathrm{pH}$ of a solution of $\mathrm{NaOH}$ is 12. The mass of $\mathrm{NaOH}$ present in $500 \mathrm{~mL}$ of the solution is

1 $400 \mathrm{mg}$
2 $200 \mathrm{mg}$
3 $20 \mathrm{mg}$
4 $40 \mathrm{mg}$
Ionic Equilibrium

229810 The $\mathrm{pOH}$ of $0.0005 \mathrm{M}$ sulphuric acid is

1 5
2 3
3 11
4 12
Ionic Equilibrium

229811 The $\mathrm{pH}$ of $\mathrm{HCl}$ is 5 . If $10 \mathrm{~mL}$ of this solution is diluted to $100 \mathrm{~mL}$, the $\mathrm{pH}$ of the resultant solution is

1 5.1
2 6.9
3 11
4 12
Ionic Equilibrium

229812 The $\mathrm{pH}$ of a mixture of $10 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4, 5$ $\mathrm{ml}$ of $0.2 \mathrm{M} \mathrm{HCl}$ and $5 \mathrm{ml}$ of $0.1 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_2$ is

1 1
2 0.5
3 0
4 1.5