01. Solubility and Solubility Product Constant
Ionic Equilibrium

229507 The solubility of $\mathrm{CaF}_2$ in pure water is $2.3 \times 10-4 \mathrm{~mol} \mathrm{dm}$ Its solubility product will be:

1 $4.6 \times 10^{-4}$
2 $4.6 \times 10^{-8}$
3 $6.9 \times 10^{-12}$
4 $4.9 \times 10^{-11}$
Ionic Equilibrium

229508 The solubility product of Barium sulphate is $1.5 \times 10^{-9}$ at $18^{\circ} \mathrm{C}$. Its solubility in water at $18^{\circ} \mathrm{C}$ is:

1 $1.5 \times 10^{-9}$
2 $1.5 \times 10^{-5}$
3 $3.9 \times 10^{-9}$
4 $3.9 \times 10^{-5}$
Ionic Equilibrium

229510 Solubility product of $\mathrm{Mg}(\mathrm{OH})_2$ at ordinary temp $1.96 \times 10^{-11} . \mathrm{pH}$ of a saturated soln. of $\mathbf{M g}$ $(\mathrm{OH})_2$ will be

1 10.53
2 8.47
3 6.94
4 3.47
Ionic Equilibrium

229514 The molar solubility (in $\mathrm{mol} \mathrm{L}^{-1}$ ) of a sparingly soluble salt $\mathrm{MX}_4$ is ' $S$ '. The corresponding solubility product is $K_{\mathrm{sp}} . \mathrm{S}$ in terms of ' $K_{\mathrm{sp}}$ ' is given by the relation

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{128}\right)^{1 / 4}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 5}$
3 $\mathrm{S}=\left(256 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 5}$
4 $\mathrm{S}=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$
Ionic Equilibrium

229507 The solubility of $\mathrm{CaF}_2$ in pure water is $2.3 \times 10-4 \mathrm{~mol} \mathrm{dm}$ Its solubility product will be:

1 $4.6 \times 10^{-4}$
2 $4.6 \times 10^{-8}$
3 $6.9 \times 10^{-12}$
4 $4.9 \times 10^{-11}$
Ionic Equilibrium

229508 The solubility product of Barium sulphate is $1.5 \times 10^{-9}$ at $18^{\circ} \mathrm{C}$. Its solubility in water at $18^{\circ} \mathrm{C}$ is:

1 $1.5 \times 10^{-9}$
2 $1.5 \times 10^{-5}$
3 $3.9 \times 10^{-9}$
4 $3.9 \times 10^{-5}$
Ionic Equilibrium

229510 Solubility product of $\mathrm{Mg}(\mathrm{OH})_2$ at ordinary temp $1.96 \times 10^{-11} . \mathrm{pH}$ of a saturated soln. of $\mathbf{M g}$ $(\mathrm{OH})_2$ will be

1 10.53
2 8.47
3 6.94
4 3.47
Ionic Equilibrium

229514 The molar solubility (in $\mathrm{mol} \mathrm{L}^{-1}$ ) of a sparingly soluble salt $\mathrm{MX}_4$ is ' $S$ '. The corresponding solubility product is $K_{\mathrm{sp}} . \mathrm{S}$ in terms of ' $K_{\mathrm{sp}}$ ' is given by the relation

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{128}\right)^{1 / 4}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 5}$
3 $\mathrm{S}=\left(256 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 5}$
4 $\mathrm{S}=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ionic Equilibrium

229507 The solubility of $\mathrm{CaF}_2$ in pure water is $2.3 \times 10-4 \mathrm{~mol} \mathrm{dm}$ Its solubility product will be:

1 $4.6 \times 10^{-4}$
2 $4.6 \times 10^{-8}$
3 $6.9 \times 10^{-12}$
4 $4.9 \times 10^{-11}$
Ionic Equilibrium

229508 The solubility product of Barium sulphate is $1.5 \times 10^{-9}$ at $18^{\circ} \mathrm{C}$. Its solubility in water at $18^{\circ} \mathrm{C}$ is:

1 $1.5 \times 10^{-9}$
2 $1.5 \times 10^{-5}$
3 $3.9 \times 10^{-9}$
4 $3.9 \times 10^{-5}$
Ionic Equilibrium

229510 Solubility product of $\mathrm{Mg}(\mathrm{OH})_2$ at ordinary temp $1.96 \times 10^{-11} . \mathrm{pH}$ of a saturated soln. of $\mathbf{M g}$ $(\mathrm{OH})_2$ will be

1 10.53
2 8.47
3 6.94
4 3.47
Ionic Equilibrium

229514 The molar solubility (in $\mathrm{mol} \mathrm{L}^{-1}$ ) of a sparingly soluble salt $\mathrm{MX}_4$ is ' $S$ '. The corresponding solubility product is $K_{\mathrm{sp}} . \mathrm{S}$ in terms of ' $K_{\mathrm{sp}}$ ' is given by the relation

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{128}\right)^{1 / 4}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 5}$
3 $\mathrm{S}=\left(256 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 5}$
4 $\mathrm{S}=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$
Ionic Equilibrium

229507 The solubility of $\mathrm{CaF}_2$ in pure water is $2.3 \times 10-4 \mathrm{~mol} \mathrm{dm}$ Its solubility product will be:

1 $4.6 \times 10^{-4}$
2 $4.6 \times 10^{-8}$
3 $6.9 \times 10^{-12}$
4 $4.9 \times 10^{-11}$
Ionic Equilibrium

229508 The solubility product of Barium sulphate is $1.5 \times 10^{-9}$ at $18^{\circ} \mathrm{C}$. Its solubility in water at $18^{\circ} \mathrm{C}$ is:

1 $1.5 \times 10^{-9}$
2 $1.5 \times 10^{-5}$
3 $3.9 \times 10^{-9}$
4 $3.9 \times 10^{-5}$
Ionic Equilibrium

229510 Solubility product of $\mathrm{Mg}(\mathrm{OH})_2$ at ordinary temp $1.96 \times 10^{-11} . \mathrm{pH}$ of a saturated soln. of $\mathbf{M g}$ $(\mathrm{OH})_2$ will be

1 10.53
2 8.47
3 6.94
4 3.47
Ionic Equilibrium

229514 The molar solubility (in $\mathrm{mol} \mathrm{L}^{-1}$ ) of a sparingly soluble salt $\mathrm{MX}_4$ is ' $S$ '. The corresponding solubility product is $K_{\mathrm{sp}} . \mathrm{S}$ in terms of ' $K_{\mathrm{sp}}$ ' is given by the relation

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{128}\right)^{1 / 4}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 5}$
3 $\mathrm{S}=\left(256 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 5}$
4 $\mathrm{S}=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$