01. Solubility and Solubility Product Constant
Ionic Equilibrium

229470 The solubility product $\left(K_{s p}\right)$ of the following compounds are given at $25^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Compounds } & \mathrm{K}_{\mathrm{sp}} \\ \text { AgCl } & 1.1 \times 10^{-10} \\ \mathrm{AgI} & 1.0 \times 10^{-16} \\ \mathrm{PbCrO}_4 & 4.0 \times 10^{-14} \\ \mathrm{Ag}_2 \mathrm{CO}_3 & 8.0 \times 10^{-12}\end{array}$
The most soluble and least soluble compounds are

1 $\mathrm{AgCl}$ and $\mathrm{PbCrO}_4$
2 $\mathrm{AgI}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
3 $\mathrm{AgCl}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
4 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{AgI}$
5 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{PbCrO}_4$
Ionic Equilibrium

229471 The $\mathrm{pH}$ of a saturated solution of a metal hydroxide of formula $\mathrm{X}(\mathrm{OH})_2$ is 12.0 at $298 \mathrm{~K}$. What is the solubility product of a metal hydroxide at $298 \mathrm{~K}$ (in $\mathrm{mol}^3 \mathrm{~L}^{-3}$ )?

1 $2 \times 10^{-6}$
2 $1 \times 10^{-7}$
3 $5 \times 10^{-5}$
4 $2 \times 10^{-5}$
5 $5 \times 10^{-7}$
Ionic Equilibrium

229472 If the ionic product of $\mathrm{M}(\mathrm{OH})_2$ is $5 \times 10^{-10}$ then the molar solubility of $\mathrm{M}(\mathrm{OH})_2$ in $0.1 \mathrm{M} \mathrm{NaOH}$ is

1 $5 \times 10^{-12} \mathrm{M}$
2 $5 \times 10^{-8} \mathrm{M}$
3 $5 \times 10^{-10} \mathrm{M}$
4 $5 \times 10^{-9} \mathrm{M}$
5 $5 \times 10^{-16} \mathrm{M}$
Ionic Equilibrium

229473 Solubility product $\left(\mathrm{k}_{\mathrm{sp}}\right)$ of saturated $\mathbf{P b C l}_2$ in water is $1.8 \times 10^{-4} \mathrm{~mol}^3 \mathrm{dm}^{-9}$. What is the concentration of $\mathrm{Pb}^{2+}$ in the solution?

1 $\left(0.45 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
2 $\left(1.8 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
3 $\left(0.9 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
4 $\left(2.0 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
5 $\left(2.45 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
Ionic Equilibrium

229470 The solubility product $\left(K_{s p}\right)$ of the following compounds are given at $25^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Compounds } & \mathrm{K}_{\mathrm{sp}} \\ \text { AgCl } & 1.1 \times 10^{-10} \\ \mathrm{AgI} & 1.0 \times 10^{-16} \\ \mathrm{PbCrO}_4 & 4.0 \times 10^{-14} \\ \mathrm{Ag}_2 \mathrm{CO}_3 & 8.0 \times 10^{-12}\end{array}$
The most soluble and least soluble compounds are

1 $\mathrm{AgCl}$ and $\mathrm{PbCrO}_4$
2 $\mathrm{AgI}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
3 $\mathrm{AgCl}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
4 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{AgI}$
5 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{PbCrO}_4$
Ionic Equilibrium

229471 The $\mathrm{pH}$ of a saturated solution of a metal hydroxide of formula $\mathrm{X}(\mathrm{OH})_2$ is 12.0 at $298 \mathrm{~K}$. What is the solubility product of a metal hydroxide at $298 \mathrm{~K}$ (in $\mathrm{mol}^3 \mathrm{~L}^{-3}$ )?

1 $2 \times 10^{-6}$
2 $1 \times 10^{-7}$
3 $5 \times 10^{-5}$
4 $2 \times 10^{-5}$
5 $5 \times 10^{-7}$
Ionic Equilibrium

229472 If the ionic product of $\mathrm{M}(\mathrm{OH})_2$ is $5 \times 10^{-10}$ then the molar solubility of $\mathrm{M}(\mathrm{OH})_2$ in $0.1 \mathrm{M} \mathrm{NaOH}$ is

1 $5 \times 10^{-12} \mathrm{M}$
2 $5 \times 10^{-8} \mathrm{M}$
3 $5 \times 10^{-10} \mathrm{M}$
4 $5 \times 10^{-9} \mathrm{M}$
5 $5 \times 10^{-16} \mathrm{M}$
Ionic Equilibrium

229473 Solubility product $\left(\mathrm{k}_{\mathrm{sp}}\right)$ of saturated $\mathbf{P b C l}_2$ in water is $1.8 \times 10^{-4} \mathrm{~mol}^3 \mathrm{dm}^{-9}$. What is the concentration of $\mathrm{Pb}^{2+}$ in the solution?

1 $\left(0.45 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
2 $\left(1.8 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
3 $\left(0.9 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
4 $\left(2.0 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
5 $\left(2.45 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
Ionic Equilibrium

229470 The solubility product $\left(K_{s p}\right)$ of the following compounds are given at $25^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Compounds } & \mathrm{K}_{\mathrm{sp}} \\ \text { AgCl } & 1.1 \times 10^{-10} \\ \mathrm{AgI} & 1.0 \times 10^{-16} \\ \mathrm{PbCrO}_4 & 4.0 \times 10^{-14} \\ \mathrm{Ag}_2 \mathrm{CO}_3 & 8.0 \times 10^{-12}\end{array}$
The most soluble and least soluble compounds are

1 $\mathrm{AgCl}$ and $\mathrm{PbCrO}_4$
2 $\mathrm{AgI}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
3 $\mathrm{AgCl}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
4 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{AgI}$
5 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{PbCrO}_4$
Ionic Equilibrium

229471 The $\mathrm{pH}$ of a saturated solution of a metal hydroxide of formula $\mathrm{X}(\mathrm{OH})_2$ is 12.0 at $298 \mathrm{~K}$. What is the solubility product of a metal hydroxide at $298 \mathrm{~K}$ (in $\mathrm{mol}^3 \mathrm{~L}^{-3}$ )?

1 $2 \times 10^{-6}$
2 $1 \times 10^{-7}$
3 $5 \times 10^{-5}$
4 $2 \times 10^{-5}$
5 $5 \times 10^{-7}$
Ionic Equilibrium

229472 If the ionic product of $\mathrm{M}(\mathrm{OH})_2$ is $5 \times 10^{-10}$ then the molar solubility of $\mathrm{M}(\mathrm{OH})_2$ in $0.1 \mathrm{M} \mathrm{NaOH}$ is

1 $5 \times 10^{-12} \mathrm{M}$
2 $5 \times 10^{-8} \mathrm{M}$
3 $5 \times 10^{-10} \mathrm{M}$
4 $5 \times 10^{-9} \mathrm{M}$
5 $5 \times 10^{-16} \mathrm{M}$
Ionic Equilibrium

229473 Solubility product $\left(\mathrm{k}_{\mathrm{sp}}\right)$ of saturated $\mathbf{P b C l}_2$ in water is $1.8 \times 10^{-4} \mathrm{~mol}^3 \mathrm{dm}^{-9}$. What is the concentration of $\mathrm{Pb}^{2+}$ in the solution?

1 $\left(0.45 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
2 $\left(1.8 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
3 $\left(0.9 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
4 $\left(2.0 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
5 $\left(2.45 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
Ionic Equilibrium

229470 The solubility product $\left(K_{s p}\right)$ of the following compounds are given at $25^{\circ} \mathrm{C}$
$\begin{array}{ll}\text { Compounds } & \mathrm{K}_{\mathrm{sp}} \\ \text { AgCl } & 1.1 \times 10^{-10} \\ \mathrm{AgI} & 1.0 \times 10^{-16} \\ \mathrm{PbCrO}_4 & 4.0 \times 10^{-14} \\ \mathrm{Ag}_2 \mathrm{CO}_3 & 8.0 \times 10^{-12}\end{array}$
The most soluble and least soluble compounds are

1 $\mathrm{AgCl}$ and $\mathrm{PbCrO}_4$
2 $\mathrm{AgI}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
3 $\mathrm{AgCl}$ and $\mathrm{Ag}_2 \mathrm{CO}_3$
4 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{AgI}$
5 $\mathrm{Ag}_2 \mathrm{CO}_3$ and $\mathrm{PbCrO}_4$
Ionic Equilibrium

229471 The $\mathrm{pH}$ of a saturated solution of a metal hydroxide of formula $\mathrm{X}(\mathrm{OH})_2$ is 12.0 at $298 \mathrm{~K}$. What is the solubility product of a metal hydroxide at $298 \mathrm{~K}$ (in $\mathrm{mol}^3 \mathrm{~L}^{-3}$ )?

1 $2 \times 10^{-6}$
2 $1 \times 10^{-7}$
3 $5 \times 10^{-5}$
4 $2 \times 10^{-5}$
5 $5 \times 10^{-7}$
Ionic Equilibrium

229472 If the ionic product of $\mathrm{M}(\mathrm{OH})_2$ is $5 \times 10^{-10}$ then the molar solubility of $\mathrm{M}(\mathrm{OH})_2$ in $0.1 \mathrm{M} \mathrm{NaOH}$ is

1 $5 \times 10^{-12} \mathrm{M}$
2 $5 \times 10^{-8} \mathrm{M}$
3 $5 \times 10^{-10} \mathrm{M}$
4 $5 \times 10^{-9} \mathrm{M}$
5 $5 \times 10^{-16} \mathrm{M}$
Ionic Equilibrium

229473 Solubility product $\left(\mathrm{k}_{\mathrm{sp}}\right)$ of saturated $\mathbf{P b C l}_2$ in water is $1.8 \times 10^{-4} \mathrm{~mol}^3 \mathrm{dm}^{-9}$. What is the concentration of $\mathrm{Pb}^{2+}$ in the solution?

1 $\left(0.45 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
2 $\left(1.8 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
3 $\left(0.9 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
4 $\left(2.0 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$
5 $\left(2.45 \times 10^{-4}\right)^{1 / 3} \mathrm{~mol} \mathrm{dm}^{-3}$