NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Ionic Equilibrium
229442
The first and second dissociation constants of an acid $\mathrm{H}_2 \mathrm{~A}$ are $1.0 \times 10^{-5}$ and $5.0 \times 10^{-10}$, respectively. The overall dissociation constant of the acid will be
229443
The correct equation relating solubility and solubility product for the sparingly soluble salt with the general molecular formula $\mathrm{AB}_2$ is
Ostwald applied 'law of mass action' to ionic equilibrium. This is called as Ostwald's dilution law. This law is applicable only for weak electrolytes. According to Ostwald dilution law- $\mathrm{H}_2 \mathrm{O}+\underset{\mathrm{C}}{\mathrm{HA}} \rightleftharpoons \underset{\mathrm{0}}{\mathrm{A}^{-}}+\underset{\mathrm{0}}{\mathrm{H}_3 \mathrm{O}^{+}}$ Where, $\alpha=$ degree of ionisation Dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_3 \mathrm{O}^{+}\right]}{[\mathrm{HA}]}$ \begin{aligned} \mathrm{K}_{\mathrm{a}} & =\frac{\mathrm{C}^2 \alpha^2}{\mathrm{C}(1-\alpha)} \\ \mathrm{K}_{\mathrm{a}} & =\frac{\mathrm{C} \alpha^2}{(1-\alpha)} \quad(\because \text { for weak electrolyte, } \alpha<<1) \\ \therefore \quad \mathrm{K}_{\mathrm{a}} & =\mathrm{C \alpha ^{2 }} \end{aligned}
229442
The first and second dissociation constants of an acid $\mathrm{H}_2 \mathrm{~A}$ are $1.0 \times 10^{-5}$ and $5.0 \times 10^{-10}$, respectively. The overall dissociation constant of the acid will be
229443
The correct equation relating solubility and solubility product for the sparingly soluble salt with the general molecular formula $\mathrm{AB}_2$ is
Ostwald applied 'law of mass action' to ionic equilibrium. This is called as Ostwald's dilution law. This law is applicable only for weak electrolytes. According to Ostwald dilution law- $\mathrm{H}_2 \mathrm{O}+\underset{\mathrm{C}}{\mathrm{HA}} \rightleftharpoons \underset{\mathrm{0}}{\mathrm{A}^{-}}+\underset{\mathrm{0}}{\mathrm{H}_3 \mathrm{O}^{+}}$ Where, $\alpha=$ degree of ionisation Dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_3 \mathrm{O}^{+}\right]}{[\mathrm{HA}]}$ \begin{aligned} \mathrm{K}_{\mathrm{a}} & =\frac{\mathrm{C}^2 \alpha^2}{\mathrm{C}(1-\alpha)} \\ \mathrm{K}_{\mathrm{a}} & =\frac{\mathrm{C} \alpha^2}{(1-\alpha)} \quad(\because \text { for weak electrolyte, } \alpha<<1) \\ \therefore \quad \mathrm{K}_{\mathrm{a}} & =\mathrm{C \alpha ^{2 }} \end{aligned}
229442
The first and second dissociation constants of an acid $\mathrm{H}_2 \mathrm{~A}$ are $1.0 \times 10^{-5}$ and $5.0 \times 10^{-10}$, respectively. The overall dissociation constant of the acid will be
229443
The correct equation relating solubility and solubility product for the sparingly soluble salt with the general molecular formula $\mathrm{AB}_2$ is
Ostwald applied 'law of mass action' to ionic equilibrium. This is called as Ostwald's dilution law. This law is applicable only for weak electrolytes. According to Ostwald dilution law- $\mathrm{H}_2 \mathrm{O}+\underset{\mathrm{C}}{\mathrm{HA}} \rightleftharpoons \underset{\mathrm{0}}{\mathrm{A}^{-}}+\underset{\mathrm{0}}{\mathrm{H}_3 \mathrm{O}^{+}}$ Where, $\alpha=$ degree of ionisation Dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_3 \mathrm{O}^{+}\right]}{[\mathrm{HA}]}$ \begin{aligned} \mathrm{K}_{\mathrm{a}} & =\frac{\mathrm{C}^2 \alpha^2}{\mathrm{C}(1-\alpha)} \\ \mathrm{K}_{\mathrm{a}} & =\frac{\mathrm{C} \alpha^2}{(1-\alpha)} \quad(\because \text { for weak electrolyte, } \alpha<<1) \\ \therefore \quad \mathrm{K}_{\mathrm{a}} & =\mathrm{C \alpha ^{2 }} \end{aligned}
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Ionic Equilibrium
229442
The first and second dissociation constants of an acid $\mathrm{H}_2 \mathrm{~A}$ are $1.0 \times 10^{-5}$ and $5.0 \times 10^{-10}$, respectively. The overall dissociation constant of the acid will be
229443
The correct equation relating solubility and solubility product for the sparingly soluble salt with the general molecular formula $\mathrm{AB}_2$ is
Ostwald applied 'law of mass action' to ionic equilibrium. This is called as Ostwald's dilution law. This law is applicable only for weak electrolytes. According to Ostwald dilution law- $\mathrm{H}_2 \mathrm{O}+\underset{\mathrm{C}}{\mathrm{HA}} \rightleftharpoons \underset{\mathrm{0}}{\mathrm{A}^{-}}+\underset{\mathrm{0}}{\mathrm{H}_3 \mathrm{O}^{+}}$ Where, $\alpha=$ degree of ionisation Dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}_3 \mathrm{O}^{+}\right]}{[\mathrm{HA}]}$ \begin{aligned} \mathrm{K}_{\mathrm{a}} & =\frac{\mathrm{C}^2 \alpha^2}{\mathrm{C}(1-\alpha)} \\ \mathrm{K}_{\mathrm{a}} & =\frac{\mathrm{C} \alpha^2}{(1-\alpha)} \quad(\because \text { for weak electrolyte, } \alpha<<1) \\ \therefore \quad \mathrm{K}_{\mathrm{a}} & =\mathrm{C \alpha ^{2 }} \end{aligned}