01. Solubility and Solubility Product Constant
Ionic Equilibrium

229430 The $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Cr}(\mathrm{OH})_3$ is $1.6 \times 10^{-30}$. The molar solubility of this compound in water is

1 $\sqrt[2]{1.6 \times 10^{-30}}$
2 $\sqrt[4]{1.6 \times 10^{-30}}$
3 $\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$
4 $\frac{1.6 \times 10^{-30}}{27}$
Ionic Equilibrium

229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is

1 $1.2 \times 10^{-10} \mathrm{~g}$
2 $1.2 \times 10^{-9} \mathrm{~g}$
3 $6.2 \times 10^{-5} \mathrm{~g}$
4 $5.0 \times 10^{-8} \mathrm{~g}$
Ionic Equilibrium

229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )

1 $4.1 \times 10^{-5} \mathrm{M}$
2 $5.1 \times 10^{-5} \mathrm{M}$
3 $8.1 \times 10^{-8} \mathrm{M}$
4 $8.1 \times 10^{-7} \mathrm{M}$
Ionic Equilibrium

229433 In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?

1 $28.3 \times 10^{-2} \mathrm{~g}$
2 $28.3 \times 10^{-4} \mathrm{~g}$
3 $1.0 \times 10^{-7} \mathrm{~g}$
4 $1.0 \times 10^{-4} \mathrm{~g}$
Ionic Equilibrium

229434 The solubility product of a salt having general formula $M_2$, in water is $4 \times 10^{-12}$. The concentration of $\mathrm{M}^{2+}$ ions in the aqueous solution of the salt is

1 $4.0 \times 10^{-10} \mathrm{M}$
2 $1.6 \times 10^{-4} \mathrm{M}$
3 $1.0 \times 10^{-4} \mathrm{M}$
4 $2.0 \times 10^{-6} \mathrm{M}$
Ionic Equilibrium

229430 The $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Cr}(\mathrm{OH})_3$ is $1.6 \times 10^{-30}$. The molar solubility of this compound in water is

1 $\sqrt[2]{1.6 \times 10^{-30}}$
2 $\sqrt[4]{1.6 \times 10^{-30}}$
3 $\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$
4 $\frac{1.6 \times 10^{-30}}{27}$
Ionic Equilibrium

229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is

1 $1.2 \times 10^{-10} \mathrm{~g}$
2 $1.2 \times 10^{-9} \mathrm{~g}$
3 $6.2 \times 10^{-5} \mathrm{~g}$
4 $5.0 \times 10^{-8} \mathrm{~g}$
Ionic Equilibrium

229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )

1 $4.1 \times 10^{-5} \mathrm{M}$
2 $5.1 \times 10^{-5} \mathrm{M}$
3 $8.1 \times 10^{-8} \mathrm{M}$
4 $8.1 \times 10^{-7} \mathrm{M}$
Ionic Equilibrium

229433 In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?

1 $28.3 \times 10^{-2} \mathrm{~g}$
2 $28.3 \times 10^{-4} \mathrm{~g}$
3 $1.0 \times 10^{-7} \mathrm{~g}$
4 $1.0 \times 10^{-4} \mathrm{~g}$
Ionic Equilibrium

229434 The solubility product of a salt having general formula $M_2$, in water is $4 \times 10^{-12}$. The concentration of $\mathrm{M}^{2+}$ ions in the aqueous solution of the salt is

1 $4.0 \times 10^{-10} \mathrm{M}$
2 $1.6 \times 10^{-4} \mathrm{M}$
3 $1.0 \times 10^{-4} \mathrm{M}$
4 $2.0 \times 10^{-6} \mathrm{M}$
Ionic Equilibrium

229430 The $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Cr}(\mathrm{OH})_3$ is $1.6 \times 10^{-30}$. The molar solubility of this compound in water is

1 $\sqrt[2]{1.6 \times 10^{-30}}$
2 $\sqrt[4]{1.6 \times 10^{-30}}$
3 $\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$
4 $\frac{1.6 \times 10^{-30}}{27}$
Ionic Equilibrium

229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is

1 $1.2 \times 10^{-10} \mathrm{~g}$
2 $1.2 \times 10^{-9} \mathrm{~g}$
3 $6.2 \times 10^{-5} \mathrm{~g}$
4 $5.0 \times 10^{-8} \mathrm{~g}$
Ionic Equilibrium

229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )

1 $4.1 \times 10^{-5} \mathrm{M}$
2 $5.1 \times 10^{-5} \mathrm{M}$
3 $8.1 \times 10^{-8} \mathrm{M}$
4 $8.1 \times 10^{-7} \mathrm{M}$
Ionic Equilibrium

229433 In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?

1 $28.3 \times 10^{-2} \mathrm{~g}$
2 $28.3 \times 10^{-4} \mathrm{~g}$
3 $1.0 \times 10^{-7} \mathrm{~g}$
4 $1.0 \times 10^{-4} \mathrm{~g}$
Ionic Equilibrium

229434 The solubility product of a salt having general formula $M_2$, in water is $4 \times 10^{-12}$. The concentration of $\mathrm{M}^{2+}$ ions in the aqueous solution of the salt is

1 $4.0 \times 10^{-10} \mathrm{M}$
2 $1.6 \times 10^{-4} \mathrm{M}$
3 $1.0 \times 10^{-4} \mathrm{M}$
4 $2.0 \times 10^{-6} \mathrm{M}$
Ionic Equilibrium

229430 The $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Cr}(\mathrm{OH})_3$ is $1.6 \times 10^{-30}$. The molar solubility of this compound in water is

1 $\sqrt[2]{1.6 \times 10^{-30}}$
2 $\sqrt[4]{1.6 \times 10^{-30}}$
3 $\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$
4 $\frac{1.6 \times 10^{-30}}{27}$
Ionic Equilibrium

229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is

1 $1.2 \times 10^{-10} \mathrm{~g}$
2 $1.2 \times 10^{-9} \mathrm{~g}$
3 $6.2 \times 10^{-5} \mathrm{~g}$
4 $5.0 \times 10^{-8} \mathrm{~g}$
Ionic Equilibrium

229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )

1 $4.1 \times 10^{-5} \mathrm{M}$
2 $5.1 \times 10^{-5} \mathrm{M}$
3 $8.1 \times 10^{-8} \mathrm{M}$
4 $8.1 \times 10^{-7} \mathrm{M}$
Ionic Equilibrium

229433 In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?

1 $28.3 \times 10^{-2} \mathrm{~g}$
2 $28.3 \times 10^{-4} \mathrm{~g}$
3 $1.0 \times 10^{-7} \mathrm{~g}$
4 $1.0 \times 10^{-4} \mathrm{~g}$
Ionic Equilibrium

229434 The solubility product of a salt having general formula $M_2$, in water is $4 \times 10^{-12}$. The concentration of $\mathrm{M}^{2+}$ ions in the aqueous solution of the salt is

1 $4.0 \times 10^{-10} \mathrm{M}$
2 $1.6 \times 10^{-4} \mathrm{M}$
3 $1.0 \times 10^{-4} \mathrm{M}$
4 $2.0 \times 10^{-6} \mathrm{M}$
Ionic Equilibrium

229430 The $\mathrm{K}_{\mathrm{sp}}$ for $\mathrm{Cr}(\mathrm{OH})_3$ is $1.6 \times 10^{-30}$. The molar solubility of this compound in water is

1 $\sqrt[2]{1.6 \times 10^{-30}}$
2 $\sqrt[4]{1.6 \times 10^{-30}}$
3 $\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$
4 $\frac{1.6 \times 10^{-30}}{27}$
Ionic Equilibrium

229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is

1 $1.2 \times 10^{-10} \mathrm{~g}$
2 $1.2 \times 10^{-9} \mathrm{~g}$
3 $6.2 \times 10^{-5} \mathrm{~g}$
4 $5.0 \times 10^{-8} \mathrm{~g}$
Ionic Equilibrium

229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )

1 $4.1 \times 10^{-5} \mathrm{M}$
2 $5.1 \times 10^{-5} \mathrm{M}$
3 $8.1 \times 10^{-8} \mathrm{M}$
4 $8.1 \times 10^{-7} \mathrm{M}$
Ionic Equilibrium

229433 In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?

1 $28.3 \times 10^{-2} \mathrm{~g}$
2 $28.3 \times 10^{-4} \mathrm{~g}$
3 $1.0 \times 10^{-7} \mathrm{~g}$
4 $1.0 \times 10^{-4} \mathrm{~g}$
Ionic Equilibrium

229434 The solubility product of a salt having general formula $M_2$, in water is $4 \times 10^{-12}$. The concentration of $\mathrm{M}^{2+}$ ions in the aqueous solution of the salt is

1 $4.0 \times 10^{-10} \mathrm{M}$
2 $1.6 \times 10^{-4} \mathrm{M}$
3 $1.0 \times 10^{-4} \mathrm{M}$
4 $2.0 \times 10^{-6} \mathrm{M}$