01. Solubility and Solubility Product Constant
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ionic Equilibrium

229402 The solubility product of $\mathrm{AgCl}$ is $4.0 \mathrm{10}^{-10}$ at $298 \mathrm{~K}$. The solubility of $\mathrm{AgCl}$ in $0.04 \mathrm{M} \mathrm{CaCl}_2$ will be

1 $5.0 \times 10^{-9} \mathrm{M}$
2 $20 \times 10^{-5} \mathrm{M}$
3 $2.2 \times 10^{-4} \mathrm{M}$
4 $1.0 \times 10^{-4} \mathrm{M}$
Ionic Equilibrium

229403 The solubility of $\mathrm{AgCl}$ is $1 \times \mathbf{1 0}^{-5} \mathrm{~mol} /$ litre. Its solubility in 0.1 molar sodium chloride solution is

1 $1 \times 10^{-10}$
2 $1 \times 10^{-5}$
3 $1 \times 10^{-9}$
4 $1 \times 10^{-4}$
Ionic Equilibrium

229404 Three sparingly soluble salts $M_2 X, M X$ and $\mathbf{M X}_3$ have same value of solubility product. Their solubilities follow the order

1 $\mathrm{MX}_3>\mathrm{MX}>\mathrm{M}_2 \mathrm{X}$
2 $\mathrm{MX}>\mathrm{MX}_3>\mathrm{M}_2 \mathrm{X}$
3 $\mathrm{MX}>\mathrm{M}_2 \mathrm{X}>\mathrm{MX}_3$
4 $\mathrm{MX}_3>\mathrm{M}_2 \mathrm{X}>\mathrm{MX}$
Ionic Equilibrium

229405 If $\mathrm{S}$ is the solubility of $\mathrm{Zr}_3\left(\mathrm{PO}_4\right)_4$ in Pure water then.

1 $\mathrm{K}_{\mathrm{SP}}=\mathrm{S}^7$
2 $\mathrm{K}_{\mathrm{SP}}=12 \mathrm{~S}^7$
3 $\mathrm{K}_{\mathrm{SP}}=5184 \mathrm{~S}^7$
4 $\mathrm{K}_{\mathrm{SP}}=6912 \mathrm{~S}^7$
Ionic Equilibrium

229402 The solubility product of $\mathrm{AgCl}$ is $4.0 \mathrm{10}^{-10}$ at $298 \mathrm{~K}$. The solubility of $\mathrm{AgCl}$ in $0.04 \mathrm{M} \mathrm{CaCl}_2$ will be

1 $5.0 \times 10^{-9} \mathrm{M}$
2 $20 \times 10^{-5} \mathrm{M}$
3 $2.2 \times 10^{-4} \mathrm{M}$
4 $1.0 \times 10^{-4} \mathrm{M}$
Ionic Equilibrium

229403 The solubility of $\mathrm{AgCl}$ is $1 \times \mathbf{1 0}^{-5} \mathrm{~mol} /$ litre. Its solubility in 0.1 molar sodium chloride solution is

1 $1 \times 10^{-10}$
2 $1 \times 10^{-5}$
3 $1 \times 10^{-9}$
4 $1 \times 10^{-4}$
Ionic Equilibrium

229404 Three sparingly soluble salts $M_2 X, M X$ and $\mathbf{M X}_3$ have same value of solubility product. Their solubilities follow the order

1 $\mathrm{MX}_3>\mathrm{MX}>\mathrm{M}_2 \mathrm{X}$
2 $\mathrm{MX}>\mathrm{MX}_3>\mathrm{M}_2 \mathrm{X}$
3 $\mathrm{MX}>\mathrm{M}_2 \mathrm{X}>\mathrm{MX}_3$
4 $\mathrm{MX}_3>\mathrm{M}_2 \mathrm{X}>\mathrm{MX}$
Ionic Equilibrium

229405 If $\mathrm{S}$ is the solubility of $\mathrm{Zr}_3\left(\mathrm{PO}_4\right)_4$ in Pure water then.

1 $\mathrm{K}_{\mathrm{SP}}=\mathrm{S}^7$
2 $\mathrm{K}_{\mathrm{SP}}=12 \mathrm{~S}^7$
3 $\mathrm{K}_{\mathrm{SP}}=5184 \mathrm{~S}^7$
4 $\mathrm{K}_{\mathrm{SP}}=6912 \mathrm{~S}^7$
Ionic Equilibrium

229402 The solubility product of $\mathrm{AgCl}$ is $4.0 \mathrm{10}^{-10}$ at $298 \mathrm{~K}$. The solubility of $\mathrm{AgCl}$ in $0.04 \mathrm{M} \mathrm{CaCl}_2$ will be

1 $5.0 \times 10^{-9} \mathrm{M}$
2 $20 \times 10^{-5} \mathrm{M}$
3 $2.2 \times 10^{-4} \mathrm{M}$
4 $1.0 \times 10^{-4} \mathrm{M}$
Ionic Equilibrium

229403 The solubility of $\mathrm{AgCl}$ is $1 \times \mathbf{1 0}^{-5} \mathrm{~mol} /$ litre. Its solubility in 0.1 molar sodium chloride solution is

1 $1 \times 10^{-10}$
2 $1 \times 10^{-5}$
3 $1 \times 10^{-9}$
4 $1 \times 10^{-4}$
Ionic Equilibrium

229404 Three sparingly soluble salts $M_2 X, M X$ and $\mathbf{M X}_3$ have same value of solubility product. Their solubilities follow the order

1 $\mathrm{MX}_3>\mathrm{MX}>\mathrm{M}_2 \mathrm{X}$
2 $\mathrm{MX}>\mathrm{MX}_3>\mathrm{M}_2 \mathrm{X}$
3 $\mathrm{MX}>\mathrm{M}_2 \mathrm{X}>\mathrm{MX}_3$
4 $\mathrm{MX}_3>\mathrm{M}_2 \mathrm{X}>\mathrm{MX}$
Ionic Equilibrium

229405 If $\mathrm{S}$ is the solubility of $\mathrm{Zr}_3\left(\mathrm{PO}_4\right)_4$ in Pure water then.

1 $\mathrm{K}_{\mathrm{SP}}=\mathrm{S}^7$
2 $\mathrm{K}_{\mathrm{SP}}=12 \mathrm{~S}^7$
3 $\mathrm{K}_{\mathrm{SP}}=5184 \mathrm{~S}^7$
4 $\mathrm{K}_{\mathrm{SP}}=6912 \mathrm{~S}^7$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ionic Equilibrium

229402 The solubility product of $\mathrm{AgCl}$ is $4.0 \mathrm{10}^{-10}$ at $298 \mathrm{~K}$. The solubility of $\mathrm{AgCl}$ in $0.04 \mathrm{M} \mathrm{CaCl}_2$ will be

1 $5.0 \times 10^{-9} \mathrm{M}$
2 $20 \times 10^{-5} \mathrm{M}$
3 $2.2 \times 10^{-4} \mathrm{M}$
4 $1.0 \times 10^{-4} \mathrm{M}$
Ionic Equilibrium

229403 The solubility of $\mathrm{AgCl}$ is $1 \times \mathbf{1 0}^{-5} \mathrm{~mol} /$ litre. Its solubility in 0.1 molar sodium chloride solution is

1 $1 \times 10^{-10}$
2 $1 \times 10^{-5}$
3 $1 \times 10^{-9}$
4 $1 \times 10^{-4}$
Ionic Equilibrium

229404 Three sparingly soluble salts $M_2 X, M X$ and $\mathbf{M X}_3$ have same value of solubility product. Their solubilities follow the order

1 $\mathrm{MX}_3>\mathrm{MX}>\mathrm{M}_2 \mathrm{X}$
2 $\mathrm{MX}>\mathrm{MX}_3>\mathrm{M}_2 \mathrm{X}$
3 $\mathrm{MX}>\mathrm{M}_2 \mathrm{X}>\mathrm{MX}_3$
4 $\mathrm{MX}_3>\mathrm{M}_2 \mathrm{X}>\mathrm{MX}$
Ionic Equilibrium

229405 If $\mathrm{S}$ is the solubility of $\mathrm{Zr}_3\left(\mathrm{PO}_4\right)_4$ in Pure water then.

1 $\mathrm{K}_{\mathrm{SP}}=\mathrm{S}^7$
2 $\mathrm{K}_{\mathrm{SP}}=12 \mathrm{~S}^7$
3 $\mathrm{K}_{\mathrm{SP}}=5184 \mathrm{~S}^7$
4 $\mathrm{K}_{\mathrm{SP}}=6912 \mathrm{~S}^7$