01. Solubility and Solubility Product Constant
Ionic Equilibrium

229437 Solubility of $\mathrm{Ca}(\mathrm{OH})_2$ is $\mathrm{S}$ mol $\mathrm{L}^{-1}$. The solubility product $\left(K_{s p}\right)$ under the same condition is

1 $4 \mathrm{~S}^3$
2 $3 \mathrm{~S}^4$
3 $4 \mathrm{~S}^2$
4 $\mathrm{S}^3$
Ionic Equilibrium

229399 The precipitate of calcium fluoride $\left(K_{s p}=1.7 \times 10^{-10}\right)$ is obtained when equal volume of the following are mixed.

1 $0.001 \mathrm{M} \mathrm{Ca}^{2+}+0.00001 \mathrm{M} \mathrm{F}^{-}$
2 $10^{-5} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
3 $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
4 $10^{-4} \mathrm{M} \mathrm{Ca}^{2+}+10^{-4} \mathrm{M} \mathrm{F}^{-}$
Ionic Equilibrium

229400 The molar solubility (s) of the equilibrium, $\mathbf{A}_{\mathbf{x}} \cdot \mathbf{B}_{\mathbf{y}}$ (solid) ?? $\mathbf{x A}^{z^{+}}{ }_{(a q)}+\mathbf{y B}^{z^{-}}{ }_{(\mathrm{aq})}$ in terms of the solubility product $\left(K_{\mathrm{sp}}\right)$ will be

1 $s=\left(\frac{K_{s p}}{x^x y^y}\right)^{1 / x+y}$
2 $s=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x}^{\mathrm{x}}-\mathrm{y}^{\mathrm{y}}}\right)^{\mathrm{x}+\mathrm{y}}$
3 $\mathrm{s}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x} \cdot \mathrm{y}}\right)^{\mathrm{x}+\mathrm{y}}$
4 $s=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x} . \mathrm{y}}\right)^{1 / \mathrm{x}+\mathrm{y}}$
Ionic Equilibrium

229401 The solubility product of $\mathrm{Ag}_2 \mathrm{CrO}_4$ in water at $298 \mathrm{~K}$ is $3.2 \times 10^{-11}$. What will be concentration of $\mathrm{CrO}_4^{2-}$ ions in the saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$

1 $2 \times 10^{-4} \mathrm{M}$
2 $57 \times 10^{-5} \mathrm{M}$
3 $5.7 \times 10^{-6} \mathrm{M}$
4 $3.2 \times 10^{-11} \mathrm{M}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ionic Equilibrium

229437 Solubility of $\mathrm{Ca}(\mathrm{OH})_2$ is $\mathrm{S}$ mol $\mathrm{L}^{-1}$. The solubility product $\left(K_{s p}\right)$ under the same condition is

1 $4 \mathrm{~S}^3$
2 $3 \mathrm{~S}^4$
3 $4 \mathrm{~S}^2$
4 $\mathrm{S}^3$
Ionic Equilibrium

229399 The precipitate of calcium fluoride $\left(K_{s p}=1.7 \times 10^{-10}\right)$ is obtained when equal volume of the following are mixed.

1 $0.001 \mathrm{M} \mathrm{Ca}^{2+}+0.00001 \mathrm{M} \mathrm{F}^{-}$
2 $10^{-5} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
3 $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
4 $10^{-4} \mathrm{M} \mathrm{Ca}^{2+}+10^{-4} \mathrm{M} \mathrm{F}^{-}$
Ionic Equilibrium

229400 The molar solubility (s) of the equilibrium, $\mathbf{A}_{\mathbf{x}} \cdot \mathbf{B}_{\mathbf{y}}$ (solid) ?? $\mathbf{x A}^{z^{+}}{ }_{(a q)}+\mathbf{y B}^{z^{-}}{ }_{(\mathrm{aq})}$ in terms of the solubility product $\left(K_{\mathrm{sp}}\right)$ will be

1 $s=\left(\frac{K_{s p}}{x^x y^y}\right)^{1 / x+y}$
2 $s=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x}^{\mathrm{x}}-\mathrm{y}^{\mathrm{y}}}\right)^{\mathrm{x}+\mathrm{y}}$
3 $\mathrm{s}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x} \cdot \mathrm{y}}\right)^{\mathrm{x}+\mathrm{y}}$
4 $s=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x} . \mathrm{y}}\right)^{1 / \mathrm{x}+\mathrm{y}}$
Ionic Equilibrium

229401 The solubility product of $\mathrm{Ag}_2 \mathrm{CrO}_4$ in water at $298 \mathrm{~K}$ is $3.2 \times 10^{-11}$. What will be concentration of $\mathrm{CrO}_4^{2-}$ ions in the saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$

1 $2 \times 10^{-4} \mathrm{M}$
2 $57 \times 10^{-5} \mathrm{M}$
3 $5.7 \times 10^{-6} \mathrm{M}$
4 $3.2 \times 10^{-11} \mathrm{M}$
Ionic Equilibrium

229437 Solubility of $\mathrm{Ca}(\mathrm{OH})_2$ is $\mathrm{S}$ mol $\mathrm{L}^{-1}$. The solubility product $\left(K_{s p}\right)$ under the same condition is

1 $4 \mathrm{~S}^3$
2 $3 \mathrm{~S}^4$
3 $4 \mathrm{~S}^2$
4 $\mathrm{S}^3$
Ionic Equilibrium

229399 The precipitate of calcium fluoride $\left(K_{s p}=1.7 \times 10^{-10}\right)$ is obtained when equal volume of the following are mixed.

1 $0.001 \mathrm{M} \mathrm{Ca}^{2+}+0.00001 \mathrm{M} \mathrm{F}^{-}$
2 $10^{-5} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
3 $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
4 $10^{-4} \mathrm{M} \mathrm{Ca}^{2+}+10^{-4} \mathrm{M} \mathrm{F}^{-}$
Ionic Equilibrium

229400 The molar solubility (s) of the equilibrium, $\mathbf{A}_{\mathbf{x}} \cdot \mathbf{B}_{\mathbf{y}}$ (solid) ?? $\mathbf{x A}^{z^{+}}{ }_{(a q)}+\mathbf{y B}^{z^{-}}{ }_{(\mathrm{aq})}$ in terms of the solubility product $\left(K_{\mathrm{sp}}\right)$ will be

1 $s=\left(\frac{K_{s p}}{x^x y^y}\right)^{1 / x+y}$
2 $s=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x}^{\mathrm{x}}-\mathrm{y}^{\mathrm{y}}}\right)^{\mathrm{x}+\mathrm{y}}$
3 $\mathrm{s}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x} \cdot \mathrm{y}}\right)^{\mathrm{x}+\mathrm{y}}$
4 $s=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x} . \mathrm{y}}\right)^{1 / \mathrm{x}+\mathrm{y}}$
Ionic Equilibrium

229401 The solubility product of $\mathrm{Ag}_2 \mathrm{CrO}_4$ in water at $298 \mathrm{~K}$ is $3.2 \times 10^{-11}$. What will be concentration of $\mathrm{CrO}_4^{2-}$ ions in the saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$

1 $2 \times 10^{-4} \mathrm{M}$
2 $57 \times 10^{-5} \mathrm{M}$
3 $5.7 \times 10^{-6} \mathrm{M}$
4 $3.2 \times 10^{-11} \mathrm{M}$
Ionic Equilibrium

229437 Solubility of $\mathrm{Ca}(\mathrm{OH})_2$ is $\mathrm{S}$ mol $\mathrm{L}^{-1}$. The solubility product $\left(K_{s p}\right)$ under the same condition is

1 $4 \mathrm{~S}^3$
2 $3 \mathrm{~S}^4$
3 $4 \mathrm{~S}^2$
4 $\mathrm{S}^3$
Ionic Equilibrium

229399 The precipitate of calcium fluoride $\left(K_{s p}=1.7 \times 10^{-10}\right)$ is obtained when equal volume of the following are mixed.

1 $0.001 \mathrm{M} \mathrm{Ca}^{2+}+0.00001 \mathrm{M} \mathrm{F}^{-}$
2 $10^{-5} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
3 $10^{-2} \mathrm{M} \mathrm{Ca}^{2+}+10^{-3} \mathrm{M} \mathrm{F}^{-}$
4 $10^{-4} \mathrm{M} \mathrm{Ca}^{2+}+10^{-4} \mathrm{M} \mathrm{F}^{-}$
Ionic Equilibrium

229400 The molar solubility (s) of the equilibrium, $\mathbf{A}_{\mathbf{x}} \cdot \mathbf{B}_{\mathbf{y}}$ (solid) ?? $\mathbf{x A}^{z^{+}}{ }_{(a q)}+\mathbf{y B}^{z^{-}}{ }_{(\mathrm{aq})}$ in terms of the solubility product $\left(K_{\mathrm{sp}}\right)$ will be

1 $s=\left(\frac{K_{s p}}{x^x y^y}\right)^{1 / x+y}$
2 $s=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x}^{\mathrm{x}}-\mathrm{y}^{\mathrm{y}}}\right)^{\mathrm{x}+\mathrm{y}}$
3 $\mathrm{s}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x} \cdot \mathrm{y}}\right)^{\mathrm{x}+\mathrm{y}}$
4 $s=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{\mathrm{x} . \mathrm{y}}\right)^{1 / \mathrm{x}+\mathrm{y}}$
Ionic Equilibrium

229401 The solubility product of $\mathrm{Ag}_2 \mathrm{CrO}_4$ in water at $298 \mathrm{~K}$ is $3.2 \times 10^{-11}$. What will be concentration of $\mathrm{CrO}_4^{2-}$ ions in the saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$

1 $2 \times 10^{-4} \mathrm{M}$
2 $57 \times 10^{-5} \mathrm{M}$
3 $5.7 \times 10^{-6} \mathrm{M}$
4 $3.2 \times 10^{-11} \mathrm{M}$