01. Solubility and Solubility Product Constant
Ionic Equilibrium

229391 What will be solubility of $\mathrm{KAl}\left(\mathrm{SO}_4\right)_2$ in water if solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ for $\mathrm{KAl}\left(\mathrm{SO}_4\right)_2$ is $1.6 \times 10^{-11}$ (unit)?

1 $6 \times 10^{-5} \mathrm{M}$
2 $3 \times 10^{-4} \mathrm{M}$
3 $2 \times 10^{-6} \mathrm{M}$
4 $1.4 \times 10^{-3} \mathrm{M}$
Ionic Equilibrium

229436 The solubility in water of a sparingly soluble salt $\mathrm{AB}_2$ is $1.0 \times 10^{-5}$ mol $\mathrm{L}^{-1}$. Its solubility product will be

1 $4 \times 10^{-15}$
2 $4 \times 10^{-10}$
3 $1 \times 10^{-15}$
4 $1 \times 10^{-10}$
Ionic Equilibrium

229392 The $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{PbCO}_3$ and $\mathrm{MgCO}_3$ are $1.5 \times 10^{-15}$ and $1 \times 10^{-15} \quad$ respectively at $298 \mathrm{~K}$. The concentration of $\mathrm{Pb}^{2+}$ ions in a saturated solution containing $\mathrm{MgCO}_3$ and $\mathrm{PbCO}_3$ is

1 $1.5 \times 10^{-8} \mathrm{M}$
2 $3 \times 10^{-8} \mathrm{M}$
3 $2 \times 10^{-8} \mathrm{M}$
4 $2.5 \times 10^{-8} \mathrm{M}$
Ionic Equilibrium

229393 The solubility of pure oxygen in water at $20^{\circ} \mathrm{C}$ and 1.0 atmosphere pressure is $1.38 \times 10^{-3}$ mole/litre. What will be the concentration of oxygen at $20^{\circ} \mathrm{C}$ and partial pressure of 0.21 atmosphere?

1 $2.9 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
2 $5.8 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
3 $7.6 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
4 $11.6 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
Ionic Equilibrium

229391 What will be solubility of $\mathrm{KAl}\left(\mathrm{SO}_4\right)_2$ in water if solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ for $\mathrm{KAl}\left(\mathrm{SO}_4\right)_2$ is $1.6 \times 10^{-11}$ (unit)?

1 $6 \times 10^{-5} \mathrm{M}$
2 $3 \times 10^{-4} \mathrm{M}$
3 $2 \times 10^{-6} \mathrm{M}$
4 $1.4 \times 10^{-3} \mathrm{M}$
Ionic Equilibrium

229436 The solubility in water of a sparingly soluble salt $\mathrm{AB}_2$ is $1.0 \times 10^{-5}$ mol $\mathrm{L}^{-1}$. Its solubility product will be

1 $4 \times 10^{-15}$
2 $4 \times 10^{-10}$
3 $1 \times 10^{-15}$
4 $1 \times 10^{-10}$
Ionic Equilibrium

229392 The $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{PbCO}_3$ and $\mathrm{MgCO}_3$ are $1.5 \times 10^{-15}$ and $1 \times 10^{-15} \quad$ respectively at $298 \mathrm{~K}$. The concentration of $\mathrm{Pb}^{2+}$ ions in a saturated solution containing $\mathrm{MgCO}_3$ and $\mathrm{PbCO}_3$ is

1 $1.5 \times 10^{-8} \mathrm{M}$
2 $3 \times 10^{-8} \mathrm{M}$
3 $2 \times 10^{-8} \mathrm{M}$
4 $2.5 \times 10^{-8} \mathrm{M}$
Ionic Equilibrium

229393 The solubility of pure oxygen in water at $20^{\circ} \mathrm{C}$ and 1.0 atmosphere pressure is $1.38 \times 10^{-3}$ mole/litre. What will be the concentration of oxygen at $20^{\circ} \mathrm{C}$ and partial pressure of 0.21 atmosphere?

1 $2.9 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
2 $5.8 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
3 $7.6 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
4 $11.6 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
Ionic Equilibrium

229391 What will be solubility of $\mathrm{KAl}\left(\mathrm{SO}_4\right)_2$ in water if solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ for $\mathrm{KAl}\left(\mathrm{SO}_4\right)_2$ is $1.6 \times 10^{-11}$ (unit)?

1 $6 \times 10^{-5} \mathrm{M}$
2 $3 \times 10^{-4} \mathrm{M}$
3 $2 \times 10^{-6} \mathrm{M}$
4 $1.4 \times 10^{-3} \mathrm{M}$
Ionic Equilibrium

229436 The solubility in water of a sparingly soluble salt $\mathrm{AB}_2$ is $1.0 \times 10^{-5}$ mol $\mathrm{L}^{-1}$. Its solubility product will be

1 $4 \times 10^{-15}$
2 $4 \times 10^{-10}$
3 $1 \times 10^{-15}$
4 $1 \times 10^{-10}$
Ionic Equilibrium

229392 The $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{PbCO}_3$ and $\mathrm{MgCO}_3$ are $1.5 \times 10^{-15}$ and $1 \times 10^{-15} \quad$ respectively at $298 \mathrm{~K}$. The concentration of $\mathrm{Pb}^{2+}$ ions in a saturated solution containing $\mathrm{MgCO}_3$ and $\mathrm{PbCO}_3$ is

1 $1.5 \times 10^{-8} \mathrm{M}$
2 $3 \times 10^{-8} \mathrm{M}$
3 $2 \times 10^{-8} \mathrm{M}$
4 $2.5 \times 10^{-8} \mathrm{M}$
Ionic Equilibrium

229393 The solubility of pure oxygen in water at $20^{\circ} \mathrm{C}$ and 1.0 atmosphere pressure is $1.38 \times 10^{-3}$ mole/litre. What will be the concentration of oxygen at $20^{\circ} \mathrm{C}$ and partial pressure of 0.21 atmosphere?

1 $2.9 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
2 $5.8 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
3 $7.6 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
4 $11.6 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
Ionic Equilibrium

229391 What will be solubility of $\mathrm{KAl}\left(\mathrm{SO}_4\right)_2$ in water if solubility product $\left(\mathrm{K}_{\mathrm{sp}}\right)$ for $\mathrm{KAl}\left(\mathrm{SO}_4\right)_2$ is $1.6 \times 10^{-11}$ (unit)?

1 $6 \times 10^{-5} \mathrm{M}$
2 $3 \times 10^{-4} \mathrm{M}$
3 $2 \times 10^{-6} \mathrm{M}$
4 $1.4 \times 10^{-3} \mathrm{M}$
Ionic Equilibrium

229436 The solubility in water of a sparingly soluble salt $\mathrm{AB}_2$ is $1.0 \times 10^{-5}$ mol $\mathrm{L}^{-1}$. Its solubility product will be

1 $4 \times 10^{-15}$
2 $4 \times 10^{-10}$
3 $1 \times 10^{-15}$
4 $1 \times 10^{-10}$
Ionic Equilibrium

229392 The $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{PbCO}_3$ and $\mathrm{MgCO}_3$ are $1.5 \times 10^{-15}$ and $1 \times 10^{-15} \quad$ respectively at $298 \mathrm{~K}$. The concentration of $\mathrm{Pb}^{2+}$ ions in a saturated solution containing $\mathrm{MgCO}_3$ and $\mathrm{PbCO}_3$ is

1 $1.5 \times 10^{-8} \mathrm{M}$
2 $3 \times 10^{-8} \mathrm{M}$
3 $2 \times 10^{-8} \mathrm{M}$
4 $2.5 \times 10^{-8} \mathrm{M}$
Ionic Equilibrium

229393 The solubility of pure oxygen in water at $20^{\circ} \mathrm{C}$ and 1.0 atmosphere pressure is $1.38 \times 10^{-3}$ mole/litre. What will be the concentration of oxygen at $20^{\circ} \mathrm{C}$ and partial pressure of 0.21 atmosphere?

1 $2.9 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
2 $5.8 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
3 $7.6 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$
4 $11.6 \times 10^{-4} \mathrm{~mole} / \mathrm{litre}$