01. Solubility and Solubility Product Constant
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Ionic Equilibrium

229370 If the molar solubility (in mol.L ${ }^{-1}$ ) of a sparingly soluble salt $\mathrm{AB}_4$ is ' $S$ ', and the corresponding solubility product is ' $K_{\mathrm{sp}}$ ', then $S$ in terms of $K_{s p}$ is given by the relation

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 4}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 5}$
3 $\mathrm{S}=\left(256 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 5}$
4 $\mathrm{S}=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$
Ionic Equilibrium

229371 The solubility product of $\mathrm{Ni}(\mathrm{OH})_2$ at $298 \mathrm{~K}$ is $2 \times 10^{-15} \mathrm{~mol}^3 \mathrm{dm}^{-9}$. The pH value if, its aqueous and saturated solution is

1 5
2 7.5
3 9
4 13
Ionic Equilibrium

229372 The $\left[\mathrm{Ag}^{+}\right]$in a saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$ is $1.5 \times 10^{-4}$ M. What is the solubility product of $\mathrm{Ag}_2 \mathrm{CrO}_4$ ?

1 $3.375 \times 10^{-12} \mathrm{M}^3$
2 $1.6875 \times 10^{-10} \mathrm{M}^3$
3 $1.6875 \times 10^{-11} \mathrm{M}^3$
4 $1.6875 \times 10^{-12} \mathrm{M}^3$
Ionic Equilibrium

229373 The Solubility of AgBr(s) having solubility product $5 \times 10^{-10}$ in $0.2 \mathrm{M} \mathrm{NaBr}$ solution equals

1 $5 \times 10^{-10} \mathrm{M}$
2 $25 \times 10^{-10} \mathrm{M}$
3 $0.5 \mathrm{M}$
4 $0.002 \mathrm{M}$
Ionic Equilibrium

229370 If the molar solubility (in mol.L ${ }^{-1}$ ) of a sparingly soluble salt $\mathrm{AB}_4$ is ' $S$ ', and the corresponding solubility product is ' $K_{\mathrm{sp}}$ ', then $S$ in terms of $K_{s p}$ is given by the relation

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 4}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 5}$
3 $\mathrm{S}=\left(256 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 5}$
4 $\mathrm{S}=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$
Ionic Equilibrium

229371 The solubility product of $\mathrm{Ni}(\mathrm{OH})_2$ at $298 \mathrm{~K}$ is $2 \times 10^{-15} \mathrm{~mol}^3 \mathrm{dm}^{-9}$. The pH value if, its aqueous and saturated solution is

1 5
2 7.5
3 9
4 13
Ionic Equilibrium

229372 The $\left[\mathrm{Ag}^{+}\right]$in a saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$ is $1.5 \times 10^{-4}$ M. What is the solubility product of $\mathrm{Ag}_2 \mathrm{CrO}_4$ ?

1 $3.375 \times 10^{-12} \mathrm{M}^3$
2 $1.6875 \times 10^{-10} \mathrm{M}^3$
3 $1.6875 \times 10^{-11} \mathrm{M}^3$
4 $1.6875 \times 10^{-12} \mathrm{M}^3$
Ionic Equilibrium

229373 The Solubility of AgBr(s) having solubility product $5 \times 10^{-10}$ in $0.2 \mathrm{M} \mathrm{NaBr}$ solution equals

1 $5 \times 10^{-10} \mathrm{M}$
2 $25 \times 10^{-10} \mathrm{M}$
3 $0.5 \mathrm{M}$
4 $0.002 \mathrm{M}$
Ionic Equilibrium

229370 If the molar solubility (in mol.L ${ }^{-1}$ ) of a sparingly soluble salt $\mathrm{AB}_4$ is ' $S$ ', and the corresponding solubility product is ' $K_{\mathrm{sp}}$ ', then $S$ in terms of $K_{s p}$ is given by the relation

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 4}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 5}$
3 $\mathrm{S}=\left(256 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 5}$
4 $\mathrm{S}=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$
Ionic Equilibrium

229371 The solubility product of $\mathrm{Ni}(\mathrm{OH})_2$ at $298 \mathrm{~K}$ is $2 \times 10^{-15} \mathrm{~mol}^3 \mathrm{dm}^{-9}$. The pH value if, its aqueous and saturated solution is

1 5
2 7.5
3 9
4 13
Ionic Equilibrium

229372 The $\left[\mathrm{Ag}^{+}\right]$in a saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$ is $1.5 \times 10^{-4}$ M. What is the solubility product of $\mathrm{Ag}_2 \mathrm{CrO}_4$ ?

1 $3.375 \times 10^{-12} \mathrm{M}^3$
2 $1.6875 \times 10^{-10} \mathrm{M}^3$
3 $1.6875 \times 10^{-11} \mathrm{M}^3$
4 $1.6875 \times 10^{-12} \mathrm{M}^3$
Ionic Equilibrium

229373 The Solubility of AgBr(s) having solubility product $5 \times 10^{-10}$ in $0.2 \mathrm{M} \mathrm{NaBr}$ solution equals

1 $5 \times 10^{-10} \mathrm{M}$
2 $25 \times 10^{-10} \mathrm{M}$
3 $0.5 \mathrm{M}$
4 $0.002 \mathrm{M}$
Ionic Equilibrium

229370 If the molar solubility (in mol.L ${ }^{-1}$ ) of a sparingly soluble salt $\mathrm{AB}_4$ is ' $S$ ', and the corresponding solubility product is ' $K_{\mathrm{sp}}$ ', then $S$ in terms of $K_{s p}$ is given by the relation

1 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 4}$
2 $\mathrm{S}=\left(\frac{\mathrm{K}_{\mathrm{sp}}}{256}\right)^{1 / 5}$
3 $\mathrm{S}=\left(256 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 5}$
4 $\mathrm{S}=\left(128 \mathrm{~K}_{\mathrm{sp}}\right)^{1 / 4}$
Ionic Equilibrium

229371 The solubility product of $\mathrm{Ni}(\mathrm{OH})_2$ at $298 \mathrm{~K}$ is $2 \times 10^{-15} \mathrm{~mol}^3 \mathrm{dm}^{-9}$. The pH value if, its aqueous and saturated solution is

1 5
2 7.5
3 9
4 13
Ionic Equilibrium

229372 The $\left[\mathrm{Ag}^{+}\right]$in a saturated solution of $\mathrm{Ag}_2 \mathrm{CrO}_4$ is $1.5 \times 10^{-4}$ M. What is the solubility product of $\mathrm{Ag}_2 \mathrm{CrO}_4$ ?

1 $3.375 \times 10^{-12} \mathrm{M}^3$
2 $1.6875 \times 10^{-10} \mathrm{M}^3$
3 $1.6875 \times 10^{-11} \mathrm{M}^3$
4 $1.6875 \times 10^{-12} \mathrm{M}^3$
Ionic Equilibrium

229373 The Solubility of AgBr(s) having solubility product $5 \times 10^{-10}$ in $0.2 \mathrm{M} \mathrm{NaBr}$ solution equals

1 $5 \times 10^{-10} \mathrm{M}$
2 $25 \times 10^{-10} \mathrm{M}$
3 $0.5 \mathrm{M}$
4 $0.002 \mathrm{M}$