229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is
229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )
229433
In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?
229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is
229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )
229433
In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?
229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is
229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )
229433
In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?
229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is
229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )
229433
In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?
229431 Solubility product of silver bromide is $5.0 \times 10^{-13}$ - The quantity of potassium bromide (molar mass taken as $120 \mathrm{~g} \mathrm{~mol}^{-1}$ ) to be added to $1 \mathrm{~L}$ of $0.05 \mathrm{M}$ solution of silver nitrate of start the precipitation of $A g B r$ is
229432 Solid $\mathrm{Ba}\left(\mathrm{NO}_3\right)$ is gradually dissolved in a $1.0 \times 10^{-4} \mathrm{MNa}_2 \mathrm{CO}_3$ solution. At what concentration of $\mathrm{Ba}^{2+}$ will a precipitate begin to form? $\left(\mathrm{K}_{\mathrm{sp}}\right.$ for $\mathrm{BaCO}_3=5.1 \times 10^{-9}$ )
229433
In a saturated solution of the spatingly soluble strong electrolyte $\mathrm{AgIO}_3$ (molecular mass = 283) the equilibrium which sets in is $\mathrm{AgIO}_3$ (s) $\square \mathbf{A g}+(\mathrm{aq})+\mathrm{IO}_3^{-}(\mathrm{aq})$
If the solubility product constant $\mathrm{K}_{\mathrm{sp}}$ of $\mathrm{AgIO}_3$ at a given temperature is $1.0 \times 10^{-8}$, what is the mass of $\mathrm{AgIO}_3$ contained in $100 \mathrm{~mL}$ of its saturated solution?