06. Application of Kp and Kc
Chemical Equilibrium

229317 For the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium are $4.8 \times 10^{-2}$ and $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-}$ 1 , respectively. The value of $K_{c}$ for the reaction is

1 $3.3 \times 10^{2} \mathrm{~mol} \mathrm{~L}^{-1}$
2 $3 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$
3 $3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
4 $3 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$
Chemical Equilibrium

229318 A vessel at $1000 \mathrm{~K}$ contains $\mathrm{CO}_{2}$ with a pressure of $0.5 \mathrm{~atm}$. Some of the $\mathrm{CO}_{2}$ is converted into $\mathrm{CO}$ on the addition of graphite. If the total pressure at equilibrium is $0.8 \mathrm{~atm}$, the value of $K_{p}$ is

1 $1.8 \mathrm{~atm}$
2 $3 \mathrm{~atm}$
3 $0.3 \mathrm{~atm}$
4 $0.18 \mathrm{~atm}$
Chemical Equilibrium

229319 The standard Gibbs energy change at $300 \mathrm{~K}$ for the reaction, $2 \mathrm{~A}$ \rightleftharpoons $\mathrm{B}+\mathrm{C}$ is $2494.2 \mathrm{~J}$. At a given time, the composition of the reaction mixture is $[A]=1 / 2,[B]=2$ and $[C]=1 / 2$. The reaction proceeds in the $R=8.314 \mathrm{JK} / \mathrm{mol}$, $\mathrm{e}=\mathbf{2 . 7 1 8}$

1 forward direction because $\mathrm{Q}>\mathrm{k}_{\mathrm{c}}$
2 reverse direction because $\mathrm{Q}>\mathrm{k}_{\mathrm{c}}$
3 forward direction because $\mathrm{Q}<\mathrm{k}_{\mathrm{c}}$
4 reverse direction because $\mathrm{Q}<\mathrm{k}_{\mathrm{c}}$
JEE-Main-2015
Chemical Equilibrium

229320 Consider the following reversible chemical reactions,
$\begin{aligned}
& A_{2}(g)+B_{2}(g) \rightleftharpoons 2 A B(g) \ldots(\text { I }) \\
& 6 A B(g) \rightleftharpoons 3 A_{2}(g)+3 B_{2}(g) . . .(\text { II })
\end{aligned}$
The relation between $K_{1}$ and $K_{2}$ is

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{3}$
2 $\mathrm{K}_{1} \mathrm{~K}_{2}=3$
3 $\mathrm{K}_{2}=\mathrm{K}_{1}^{-3}$
4 $\mathrm{K}_{1} \mathrm{~K}_{2}=\frac{1}{3}$
JEE-Main-2019
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229317 For the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium are $4.8 \times 10^{-2}$ and $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-}$ 1 , respectively. The value of $K_{c}$ for the reaction is

1 $3.3 \times 10^{2} \mathrm{~mol} \mathrm{~L}^{-1}$
2 $3 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$
3 $3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
4 $3 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$
Chemical Equilibrium

229318 A vessel at $1000 \mathrm{~K}$ contains $\mathrm{CO}_{2}$ with a pressure of $0.5 \mathrm{~atm}$. Some of the $\mathrm{CO}_{2}$ is converted into $\mathrm{CO}$ on the addition of graphite. If the total pressure at equilibrium is $0.8 \mathrm{~atm}$, the value of $K_{p}$ is

1 $1.8 \mathrm{~atm}$
2 $3 \mathrm{~atm}$
3 $0.3 \mathrm{~atm}$
4 $0.18 \mathrm{~atm}$
Chemical Equilibrium

229319 The standard Gibbs energy change at $300 \mathrm{~K}$ for the reaction, $2 \mathrm{~A}$ \rightleftharpoons $\mathrm{B}+\mathrm{C}$ is $2494.2 \mathrm{~J}$. At a given time, the composition of the reaction mixture is $[A]=1 / 2,[B]=2$ and $[C]=1 / 2$. The reaction proceeds in the $R=8.314 \mathrm{JK} / \mathrm{mol}$, $\mathrm{e}=\mathbf{2 . 7 1 8}$

1 forward direction because $\mathrm{Q}>\mathrm{k}_{\mathrm{c}}$
2 reverse direction because $\mathrm{Q}>\mathrm{k}_{\mathrm{c}}$
3 forward direction because $\mathrm{Q}<\mathrm{k}_{\mathrm{c}}$
4 reverse direction because $\mathrm{Q}<\mathrm{k}_{\mathrm{c}}$
JEE-Main-2015
Chemical Equilibrium

229320 Consider the following reversible chemical reactions,
$\begin{aligned}
& A_{2}(g)+B_{2}(g) \rightleftharpoons 2 A B(g) \ldots(\text { I }) \\
& 6 A B(g) \rightleftharpoons 3 A_{2}(g)+3 B_{2}(g) . . .(\text { II })
\end{aligned}$
The relation between $K_{1}$ and $K_{2}$ is

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{3}$
2 $\mathrm{K}_{1} \mathrm{~K}_{2}=3$
3 $\mathrm{K}_{2}=\mathrm{K}_{1}^{-3}$
4 $\mathrm{K}_{1} \mathrm{~K}_{2}=\frac{1}{3}$
JEE-Main-2019
Chemical Equilibrium

229317 For the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium are $4.8 \times 10^{-2}$ and $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-}$ 1 , respectively. The value of $K_{c}$ for the reaction is

1 $3.3 \times 10^{2} \mathrm{~mol} \mathrm{~L}^{-1}$
2 $3 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$
3 $3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
4 $3 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$
Chemical Equilibrium

229318 A vessel at $1000 \mathrm{~K}$ contains $\mathrm{CO}_{2}$ with a pressure of $0.5 \mathrm{~atm}$. Some of the $\mathrm{CO}_{2}$ is converted into $\mathrm{CO}$ on the addition of graphite. If the total pressure at equilibrium is $0.8 \mathrm{~atm}$, the value of $K_{p}$ is

1 $1.8 \mathrm{~atm}$
2 $3 \mathrm{~atm}$
3 $0.3 \mathrm{~atm}$
4 $0.18 \mathrm{~atm}$
Chemical Equilibrium

229319 The standard Gibbs energy change at $300 \mathrm{~K}$ for the reaction, $2 \mathrm{~A}$ \rightleftharpoons $\mathrm{B}+\mathrm{C}$ is $2494.2 \mathrm{~J}$. At a given time, the composition of the reaction mixture is $[A]=1 / 2,[B]=2$ and $[C]=1 / 2$. The reaction proceeds in the $R=8.314 \mathrm{JK} / \mathrm{mol}$, $\mathrm{e}=\mathbf{2 . 7 1 8}$

1 forward direction because $\mathrm{Q}>\mathrm{k}_{\mathrm{c}}$
2 reverse direction because $\mathrm{Q}>\mathrm{k}_{\mathrm{c}}$
3 forward direction because $\mathrm{Q}<\mathrm{k}_{\mathrm{c}}$
4 reverse direction because $\mathrm{Q}<\mathrm{k}_{\mathrm{c}}$
JEE-Main-2015
Chemical Equilibrium

229320 Consider the following reversible chemical reactions,
$\begin{aligned}
& A_{2}(g)+B_{2}(g) \rightleftharpoons 2 A B(g) \ldots(\text { I }) \\
& 6 A B(g) \rightleftharpoons 3 A_{2}(g)+3 B_{2}(g) . . .(\text { II })
\end{aligned}$
The relation between $K_{1}$ and $K_{2}$ is

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{3}$
2 $\mathrm{K}_{1} \mathrm{~K}_{2}=3$
3 $\mathrm{K}_{2}=\mathrm{K}_{1}^{-3}$
4 $\mathrm{K}_{1} \mathrm{~K}_{2}=\frac{1}{3}$
JEE-Main-2019
Chemical Equilibrium

229317 For the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium are $4.8 \times 10^{-2}$ and $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-}$ 1 , respectively. The value of $K_{c}$ for the reaction is

1 $3.3 \times 10^{2} \mathrm{~mol} \mathrm{~L}^{-1}$
2 $3 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$
3 $3 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$
4 $3 \times 10^{3} \mathrm{~mol} \mathrm{~L}^{-1}$
Chemical Equilibrium

229318 A vessel at $1000 \mathrm{~K}$ contains $\mathrm{CO}_{2}$ with a pressure of $0.5 \mathrm{~atm}$. Some of the $\mathrm{CO}_{2}$ is converted into $\mathrm{CO}$ on the addition of graphite. If the total pressure at equilibrium is $0.8 \mathrm{~atm}$, the value of $K_{p}$ is

1 $1.8 \mathrm{~atm}$
2 $3 \mathrm{~atm}$
3 $0.3 \mathrm{~atm}$
4 $0.18 \mathrm{~atm}$
Chemical Equilibrium

229319 The standard Gibbs energy change at $300 \mathrm{~K}$ for the reaction, $2 \mathrm{~A}$ \rightleftharpoons $\mathrm{B}+\mathrm{C}$ is $2494.2 \mathrm{~J}$. At a given time, the composition of the reaction mixture is $[A]=1 / 2,[B]=2$ and $[C]=1 / 2$. The reaction proceeds in the $R=8.314 \mathrm{JK} / \mathrm{mol}$, $\mathrm{e}=\mathbf{2 . 7 1 8}$

1 forward direction because $\mathrm{Q}>\mathrm{k}_{\mathrm{c}}$
2 reverse direction because $\mathrm{Q}>\mathrm{k}_{\mathrm{c}}$
3 forward direction because $\mathrm{Q}<\mathrm{k}_{\mathrm{c}}$
4 reverse direction because $\mathrm{Q}<\mathrm{k}_{\mathrm{c}}$
JEE-Main-2015
Chemical Equilibrium

229320 Consider the following reversible chemical reactions,
$\begin{aligned}
& A_{2}(g)+B_{2}(g) \rightleftharpoons 2 A B(g) \ldots(\text { I }) \\
& 6 A B(g) \rightleftharpoons 3 A_{2}(g)+3 B_{2}(g) . . .(\text { II })
\end{aligned}$
The relation between $K_{1}$ and $K_{2}$ is

1 $\mathrm{K}_{2}=\mathrm{K}_{1}^{3}$
2 $\mathrm{K}_{1} \mathrm{~K}_{2}=3$
3 $\mathrm{K}_{2}=\mathrm{K}_{1}^{-3}$
4 $\mathrm{K}_{1} \mathrm{~K}_{2}=\frac{1}{3}$
JEE-Main-2019