06. Application of Kp and Kc
Chemical Equilibrium

229286 For the reaction $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}$ if we write $K_{p}=K_{c}(R T)^{x}$, then $x$ becomes

1 1
2 $-\frac{1}{2}$
3 $\frac{1}{2}$
4 1
Chemical Equilibrium

229301 The equilibrium constant $K_{p}$ for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{HI}(\mathrm{g})$ is :

1 more than one
2 less than one
3 equal to $\mathrm{K}_{\mathrm{c}}$
4 zero
Chemical Equilibrium

229315 In the equilibrium reaction,
$\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$, the equilibrium constant, $K_{c}$ is given by the expression

1 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
2 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]^{2}}{[\mathrm{~A}][\mathrm{B}]}$
3 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{A}][\mathrm{B}]^{2}}{[\mathrm{C}][\mathrm{D}]}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]^{2}}$
Chemical Equilibrium

229286 For the reaction $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}$ if we write $K_{p}=K_{c}(R T)^{x}$, then $x$ becomes

1 1
2 $-\frac{1}{2}$
3 $\frac{1}{2}$
4 1
Chemical Equilibrium

229301 The equilibrium constant $K_{p}$ for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{HI}(\mathrm{g})$ is :

1 more than one
2 less than one
3 equal to $\mathrm{K}_{\mathrm{c}}$
4 zero
Chemical Equilibrium

229315 In the equilibrium reaction,
$\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$, the equilibrium constant, $K_{c}$ is given by the expression

1 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
2 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]^{2}}{[\mathrm{~A}][\mathrm{B}]}$
3 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{A}][\mathrm{B}]^{2}}{[\mathrm{C}][\mathrm{D}]}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]^{2}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229286 For the reaction $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightleftharpoons \mathrm{SO}_{3}$ if we write $K_{p}=K_{c}(R T)^{x}$, then $x$ becomes

1 1
2 $-\frac{1}{2}$
3 $\frac{1}{2}$
4 1
Chemical Equilibrium

229301 The equilibrium constant $K_{p}$ for the reaction, $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \quad 2 \mathrm{HI}(\mathrm{g})$ is :

1 more than one
2 less than one
3 equal to $\mathrm{K}_{\mathrm{c}}$
4 zero
Chemical Equilibrium

229315 In the equilibrium reaction,
$\mathrm{A}(\mathrm{g})+2 \mathrm{~B}(\mathrm{~g}) \rightleftharpoons \mathrm{C}(\mathrm{g})+\mathrm{D}(\mathrm{g})$, the equilibrium constant, $K_{c}$ is given by the expression

1 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]}$
2 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]^{2}}{[\mathrm{~A}][\mathrm{B}]}$
3 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{A}][\mathrm{B}]^{2}}{[\mathrm{C}][\mathrm{D}]}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{B}]^{2}}$