06. Application of Kp and Kc
Chemical Equilibrium

229291 The value of equilibrium constant of the reaction, $\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} I_{2}(\mathrm{~g})$ is 8.0 . the equilibrium constant of the reaction $\mathbf{H}_{2}$ (g) $+\mathbf{I}_{2} (g)\rightleftharpoons 2 HI(g)$ will be

1 16
2 $1 / 8$
3 $1 / 16$
4 $1 / 64$
Chemical Equilibrium

229295 1.1 moles of $A$ and 2.2 moles of $B$ are mixed in a container of one litre volume to obtain the equilibrium $A+2 B \rightleftharpoons 2 C+D$.
At equilibrium 0.2 moles of $C$ are formed. The equilibrium constant for the above reaction is

1 0.001
2 0.002
3 0.003
4 0.004
Chemical Equilibrium

229296 For the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons$ 2HI, the equilibrium concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and $\mathrm{HI}$ are 8.0, 3.0 and $28.0 \mathrm{~mol} / \mathrm{L}$ respectively. The equilibrium constant is-

1 28.34
2 32.66
3 34.78
4 38.88
Chemical Equilibrium

229297 The equilibrium constant for the reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ is $\mathbf{2} \times 10^{-6}$ at $185^{\circ} \mathrm{C}$. Then the equilibrium constant for the reaction $4 \mathrm{NO}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})$ at the same temperature would be

1 $2.5 \times 10^{-5}$
2 $4 \times 10^{-12}$
3 $2.5 \times 10^{11}$
4 $2 \times 10^{6}$
5 $5 \times 10^{5}$
Chemical Equilibrium

229291 The value of equilibrium constant of the reaction, $\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} I_{2}(\mathrm{~g})$ is 8.0 . the equilibrium constant of the reaction $\mathbf{H}_{2}$ (g) $+\mathbf{I}_{2} (g)\rightleftharpoons 2 HI(g)$ will be

1 16
2 $1 / 8$
3 $1 / 16$
4 $1 / 64$
Chemical Equilibrium

229295 1.1 moles of $A$ and 2.2 moles of $B$ are mixed in a container of one litre volume to obtain the equilibrium $A+2 B \rightleftharpoons 2 C+D$.
At equilibrium 0.2 moles of $C$ are formed. The equilibrium constant for the above reaction is

1 0.001
2 0.002
3 0.003
4 0.004
Chemical Equilibrium

229296 For the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons$ 2HI, the equilibrium concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and $\mathrm{HI}$ are 8.0, 3.0 and $28.0 \mathrm{~mol} / \mathrm{L}$ respectively. The equilibrium constant is-

1 28.34
2 32.66
3 34.78
4 38.88
Chemical Equilibrium

229297 The equilibrium constant for the reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ is $\mathbf{2} \times 10^{-6}$ at $185^{\circ} \mathrm{C}$. Then the equilibrium constant for the reaction $4 \mathrm{NO}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})$ at the same temperature would be

1 $2.5 \times 10^{-5}$
2 $4 \times 10^{-12}$
3 $2.5 \times 10^{11}$
4 $2 \times 10^{6}$
5 $5 \times 10^{5}$
Chemical Equilibrium

229291 The value of equilibrium constant of the reaction, $\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} I_{2}(\mathrm{~g})$ is 8.0 . the equilibrium constant of the reaction $\mathbf{H}_{2}$ (g) $+\mathbf{I}_{2} (g)\rightleftharpoons 2 HI(g)$ will be

1 16
2 $1 / 8$
3 $1 / 16$
4 $1 / 64$
Chemical Equilibrium

229295 1.1 moles of $A$ and 2.2 moles of $B$ are mixed in a container of one litre volume to obtain the equilibrium $A+2 B \rightleftharpoons 2 C+D$.
At equilibrium 0.2 moles of $C$ are formed. The equilibrium constant for the above reaction is

1 0.001
2 0.002
3 0.003
4 0.004
Chemical Equilibrium

229296 For the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons$ 2HI, the equilibrium concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and $\mathrm{HI}$ are 8.0, 3.0 and $28.0 \mathrm{~mol} / \mathrm{L}$ respectively. The equilibrium constant is-

1 28.34
2 32.66
3 34.78
4 38.88
Chemical Equilibrium

229297 The equilibrium constant for the reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ is $\mathbf{2} \times 10^{-6}$ at $185^{\circ} \mathrm{C}$. Then the equilibrium constant for the reaction $4 \mathrm{NO}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})$ at the same temperature would be

1 $2.5 \times 10^{-5}$
2 $4 \times 10^{-12}$
3 $2.5 \times 10^{11}$
4 $2 \times 10^{6}$
5 $5 \times 10^{5}$
Chemical Equilibrium

229291 The value of equilibrium constant of the reaction, $\mathrm{HI}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} I_{2}(\mathrm{~g})$ is 8.0 . the equilibrium constant of the reaction $\mathbf{H}_{2}$ (g) $+\mathbf{I}_{2} (g)\rightleftharpoons 2 HI(g)$ will be

1 16
2 $1 / 8$
3 $1 / 16$
4 $1 / 64$
Chemical Equilibrium

229295 1.1 moles of $A$ and 2.2 moles of $B$ are mixed in a container of one litre volume to obtain the equilibrium $A+2 B \rightleftharpoons 2 C+D$.
At equilibrium 0.2 moles of $C$ are formed. The equilibrium constant for the above reaction is

1 0.001
2 0.002
3 0.003
4 0.004
Chemical Equilibrium

229296 For the reaction, $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons$ 2HI, the equilibrium concentration of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and $\mathrm{HI}$ are 8.0, 3.0 and $28.0 \mathrm{~mol} / \mathrm{L}$ respectively. The equilibrium constant is-

1 28.34
2 32.66
3 34.78
4 38.88
Chemical Equilibrium

229297 The equilibrium constant for the reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$ is $\mathbf{2} \times 10^{-6}$ at $185^{\circ} \mathrm{C}$. Then the equilibrium constant for the reaction $4 \mathrm{NO}(\mathrm{g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}_{2}(\mathrm{~g})$ at the same temperature would be

1 $2.5 \times 10^{-5}$
2 $4 \times 10^{-12}$
3 $2.5 \times 10^{11}$
4 $2 \times 10^{6}$
5 $5 \times 10^{5}$