229232
Given $K_{p}$ for the reaction,
$\frac{1}{2} \mathrm{C}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{2} \mathrm{~B}(\mathrm{~g})$ at a fixed temperature is $0.25 \mathrm{~atm}^{-2}$. Then find the $K_{p}$ for the reaction $A(g)+B(g) \rightleftharpoons \quad C(g)$ at the same temperature.
229235 For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{NO}+\mathrm{CO}_{2}$ one mole of $\mathrm{NO}_{2}$ and 2 moles of $\mathrm{CO}$ were kept in a vessel. Calculate the equilibrium constant $K_{p}$, if at equilibrium $25 \%$ of initial amount $\mathrm{CO}$ is consumed.
229236
For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$
$\mathrm{R}=0.0831 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
The relationship between $K_{p}$ and $K_{c}$ at $184^{\circ} \mathrm{C}$ is
229232
Given $K_{p}$ for the reaction,
$\frac{1}{2} \mathrm{C}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{2} \mathrm{~B}(\mathrm{~g})$ at a fixed temperature is $0.25 \mathrm{~atm}^{-2}$. Then find the $K_{p}$ for the reaction $A(g)+B(g) \rightleftharpoons \quad C(g)$ at the same temperature.
229235 For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{NO}+\mathrm{CO}_{2}$ one mole of $\mathrm{NO}_{2}$ and 2 moles of $\mathrm{CO}$ were kept in a vessel. Calculate the equilibrium constant $K_{p}$, if at equilibrium $25 \%$ of initial amount $\mathrm{CO}$ is consumed.
229236
For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$
$\mathrm{R}=0.0831 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
The relationship between $K_{p}$ and $K_{c}$ at $184^{\circ} \mathrm{C}$ is
229232
Given $K_{p}$ for the reaction,
$\frac{1}{2} \mathrm{C}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{2} \mathrm{~B}(\mathrm{~g})$ at a fixed temperature is $0.25 \mathrm{~atm}^{-2}$. Then find the $K_{p}$ for the reaction $A(g)+B(g) \rightleftharpoons \quad C(g)$ at the same temperature.
229235 For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{NO}+\mathrm{CO}_{2}$ one mole of $\mathrm{NO}_{2}$ and 2 moles of $\mathrm{CO}$ were kept in a vessel. Calculate the equilibrium constant $K_{p}$, if at equilibrium $25 \%$ of initial amount $\mathrm{CO}$ is consumed.
229236
For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$
$\mathrm{R}=0.0831 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
The relationship between $K_{p}$ and $K_{c}$ at $184^{\circ} \mathrm{C}$ is
229232
Given $K_{p}$ for the reaction,
$\frac{1}{2} \mathrm{C}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{2} \mathrm{~B}(\mathrm{~g})$ at a fixed temperature is $0.25 \mathrm{~atm}^{-2}$. Then find the $K_{p}$ for the reaction $A(g)+B(g) \rightleftharpoons \quad C(g)$ at the same temperature.
229235 For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{NO}+\mathrm{CO}_{2}$ one mole of $\mathrm{NO}_{2}$ and 2 moles of $\mathrm{CO}$ were kept in a vessel. Calculate the equilibrium constant $K_{p}$, if at equilibrium $25 \%$ of initial amount $\mathrm{CO}$ is consumed.
229236
For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$
$\mathrm{R}=0.0831 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
The relationship between $K_{p}$ and $K_{c}$ at $184^{\circ} \mathrm{C}$ is