06. Application of Kp and Kc
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229232 Given $K_{p}$ for the reaction,
$\frac{1}{2} \mathrm{C}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{2} \mathrm{~B}(\mathrm{~g})$ at a fixed temperature is $0.25 \mathrm{~atm}^{-2}$. Then find the $K_{p}$ for the reaction $A(g)+B(g) \rightleftharpoons \quad C(g)$ at the same temperature.

1 16
2 25
3 9
4 36
Chemical Equilibrium

229233 The equilibrium constant for the reaction is $\mathbf{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathbf{P}_{\mathbf{4}} \mathrm{O}_{\mathbf{1 0}}(\mathrm{s})$

1 $\mathrm{K}_{\mathrm{c}}=\sqrt{5 \mathrm{O}_{2}}$
2 $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{O}_{2}\right]^{5}$
3 $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{P}_{4} \mathrm{O}_{10}\right] /\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]^{5}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$
Chemical Equilibrium

229235 For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{NO}+\mathrm{CO}_{2}$ one mole of $\mathrm{NO}_{2}$ and 2 moles of $\mathrm{CO}$ were kept in a vessel. Calculate the equilibrium constant $K_{p}$, if at equilibrium $25 \%$ of initial amount $\mathrm{CO}$ is consumed.

1 $\frac{1}{2}$
2 $\frac{1}{3}$
3 1
4 $\frac{1}{4}$
Chemical Equilibrium

229236 For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$
$\mathrm{R}=0.0831 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
The relationship between $K_{p}$ and $K_{c}$ at $184^{\circ} \mathrm{C}$ is

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
4 $K_{p}$ is independent of $K_{c}$
Chemical Equilibrium

229232 Given $K_{p}$ for the reaction,
$\frac{1}{2} \mathrm{C}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{2} \mathrm{~B}(\mathrm{~g})$ at a fixed temperature is $0.25 \mathrm{~atm}^{-2}$. Then find the $K_{p}$ for the reaction $A(g)+B(g) \rightleftharpoons \quad C(g)$ at the same temperature.

1 16
2 25
3 9
4 36
Chemical Equilibrium

229233 The equilibrium constant for the reaction is $\mathbf{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathbf{P}_{\mathbf{4}} \mathrm{O}_{\mathbf{1 0}}(\mathrm{s})$

1 $\mathrm{K}_{\mathrm{c}}=\sqrt{5 \mathrm{O}_{2}}$
2 $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{O}_{2}\right]^{5}$
3 $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{P}_{4} \mathrm{O}_{10}\right] /\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]^{5}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$
Chemical Equilibrium

229235 For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{NO}+\mathrm{CO}_{2}$ one mole of $\mathrm{NO}_{2}$ and 2 moles of $\mathrm{CO}$ were kept in a vessel. Calculate the equilibrium constant $K_{p}$, if at equilibrium $25 \%$ of initial amount $\mathrm{CO}$ is consumed.

1 $\frac{1}{2}$
2 $\frac{1}{3}$
3 1
4 $\frac{1}{4}$
Chemical Equilibrium

229236 For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$
$\mathrm{R}=0.0831 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
The relationship between $K_{p}$ and $K_{c}$ at $184^{\circ} \mathrm{C}$ is

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
4 $K_{p}$ is independent of $K_{c}$
Chemical Equilibrium

229232 Given $K_{p}$ for the reaction,
$\frac{1}{2} \mathrm{C}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{2} \mathrm{~B}(\mathrm{~g})$ at a fixed temperature is $0.25 \mathrm{~atm}^{-2}$. Then find the $K_{p}$ for the reaction $A(g)+B(g) \rightleftharpoons \quad C(g)$ at the same temperature.

1 16
2 25
3 9
4 36
Chemical Equilibrium

229233 The equilibrium constant for the reaction is $\mathbf{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathbf{P}_{\mathbf{4}} \mathrm{O}_{\mathbf{1 0}}(\mathrm{s})$

1 $\mathrm{K}_{\mathrm{c}}=\sqrt{5 \mathrm{O}_{2}}$
2 $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{O}_{2}\right]^{5}$
3 $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{P}_{4} \mathrm{O}_{10}\right] /\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]^{5}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$
Chemical Equilibrium

229235 For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{NO}+\mathrm{CO}_{2}$ one mole of $\mathrm{NO}_{2}$ and 2 moles of $\mathrm{CO}$ were kept in a vessel. Calculate the equilibrium constant $K_{p}$, if at equilibrium $25 \%$ of initial amount $\mathrm{CO}$ is consumed.

1 $\frac{1}{2}$
2 $\frac{1}{3}$
3 1
4 $\frac{1}{4}$
Chemical Equilibrium

229236 For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$
$\mathrm{R}=0.0831 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
The relationship between $K_{p}$ and $K_{c}$ at $184^{\circ} \mathrm{C}$ is

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
4 $K_{p}$ is independent of $K_{c}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Chemical Equilibrium

229232 Given $K_{p}$ for the reaction,
$\frac{1}{2} \mathrm{C}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~A}(\mathrm{~g})+\frac{1}{2} \mathrm{~B}(\mathrm{~g})$ at a fixed temperature is $0.25 \mathrm{~atm}^{-2}$. Then find the $K_{p}$ for the reaction $A(g)+B(g) \rightleftharpoons \quad C(g)$ at the same temperature.

1 16
2 25
3 9
4 36
Chemical Equilibrium

229233 The equilibrium constant for the reaction is $\mathbf{P}_{4}(\mathrm{~s})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \quad \mathbf{P}_{\mathbf{4}} \mathrm{O}_{\mathbf{1 0}}(\mathrm{s})$

1 $\mathrm{K}_{\mathrm{c}}=\sqrt{5 \mathrm{O}_{2}}$
2 $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{O}_{2}\right]^{5}$
3 $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{P}_{4} \mathrm{O}_{10}\right] /\left[\mathrm{P}_{4}\right]\left[\mathrm{O}_{2}\right]^{5}$
4 $\mathrm{K}_{\mathrm{c}}=\frac{1}{\left[\mathrm{O}_{2}\right]^{5}}$
Chemical Equilibrium

229235 For the reaction $\mathrm{NO}_{2}+\mathrm{CO} \rightleftharpoons \mathrm{NO}+\mathrm{CO}_{2}$ one mole of $\mathrm{NO}_{2}$ and 2 moles of $\mathrm{CO}$ were kept in a vessel. Calculate the equilibrium constant $K_{p}$, if at equilibrium $25 \%$ of initial amount $\mathrm{CO}$ is consumed.

1 $\frac{1}{2}$
2 $\frac{1}{3}$
3 1
4 $\frac{1}{4}$
Chemical Equilibrium

229236 For the reaction
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
$K_{c}=1.8 \times 10^{-6}$ at $184^{\circ} \mathrm{C}$
$\mathrm{R}=0.0831 \mathrm{kJK}^{-1} \mathrm{~mol}^{-1}$
The relationship between $K_{p}$ and $K_{c}$ at $184^{\circ} \mathrm{C}$ is

1 $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{c}}$
2 $\mathrm{K}_{\mathrm{p}}<\mathrm{K}_{\mathrm{c}}$
3 $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}$
4 $K_{p}$ is independent of $K_{c}$