229317
For the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium are $4.8 \times 10^{-2}$ and $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-}$ 1 , respectively. The value of $K_{c}$ for the reaction is
229318 A vessel at $1000 \mathrm{~K}$ contains $\mathrm{CO}_{2}$ with a pressure of $0.5 \mathrm{~atm}$. Some of the $\mathrm{CO}_{2}$ is converted into $\mathrm{CO}$ on the addition of graphite. If the total pressure at equilibrium is $0.8 \mathrm{~atm}$, the value of $K_{p}$ is
229319 The standard Gibbs energy change at $300 \mathrm{~K}$ for the reaction, $2 \mathrm{~A}$ \rightleftharpoons $\mathrm{B}+\mathrm{C}$ is $2494.2 \mathrm{~J}$. At a given time, the composition of the reaction mixture is $[A]=1 / 2,[B]=2$ and $[C]=1 / 2$. The reaction proceeds in the $R=8.314 \mathrm{JK} / \mathrm{mol}$, $\mathrm{e}=\mathbf{2 . 7 1 8}$
229317
For the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium are $4.8 \times 10^{-2}$ and $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-}$ 1 , respectively. The value of $K_{c}$ for the reaction is
229318 A vessel at $1000 \mathrm{~K}$ contains $\mathrm{CO}_{2}$ with a pressure of $0.5 \mathrm{~atm}$. Some of the $\mathrm{CO}_{2}$ is converted into $\mathrm{CO}$ on the addition of graphite. If the total pressure at equilibrium is $0.8 \mathrm{~atm}$, the value of $K_{p}$ is
229319 The standard Gibbs energy change at $300 \mathrm{~K}$ for the reaction, $2 \mathrm{~A}$ \rightleftharpoons $\mathrm{B}+\mathrm{C}$ is $2494.2 \mathrm{~J}$. At a given time, the composition of the reaction mixture is $[A]=1 / 2,[B]=2$ and $[C]=1 / 2$. The reaction proceeds in the $R=8.314 \mathrm{JK} / \mathrm{mol}$, $\mathrm{e}=\mathbf{2 . 7 1 8}$
229317
For the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium are $4.8 \times 10^{-2}$ and $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-}$ 1 , respectively. The value of $K_{c}$ for the reaction is
229318 A vessel at $1000 \mathrm{~K}$ contains $\mathrm{CO}_{2}$ with a pressure of $0.5 \mathrm{~atm}$. Some of the $\mathrm{CO}_{2}$ is converted into $\mathrm{CO}$ on the addition of graphite. If the total pressure at equilibrium is $0.8 \mathrm{~atm}$, the value of $K_{p}$ is
229319 The standard Gibbs energy change at $300 \mathrm{~K}$ for the reaction, $2 \mathrm{~A}$ \rightleftharpoons $\mathrm{B}+\mathrm{C}$ is $2494.2 \mathrm{~J}$. At a given time, the composition of the reaction mixture is $[A]=1 / 2,[B]=2$ and $[C]=1 / 2$. The reaction proceeds in the $R=8.314 \mathrm{JK} / \mathrm{mol}$, $\mathrm{e}=\mathbf{2 . 7 1 8}$
229317
For the reaction equilibrium
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
the concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{NO}_{2}$ at equilibrium are $4.8 \times 10^{-2}$ and $1.2 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-}$ 1 , respectively. The value of $K_{c}$ for the reaction is
229318 A vessel at $1000 \mathrm{~K}$ contains $\mathrm{CO}_{2}$ with a pressure of $0.5 \mathrm{~atm}$. Some of the $\mathrm{CO}_{2}$ is converted into $\mathrm{CO}$ on the addition of graphite. If the total pressure at equilibrium is $0.8 \mathrm{~atm}$, the value of $K_{p}$ is
229319 The standard Gibbs energy change at $300 \mathrm{~K}$ for the reaction, $2 \mathrm{~A}$ \rightleftharpoons $\mathrm{B}+\mathrm{C}$ is $2494.2 \mathrm{~J}$. At a given time, the composition of the reaction mixture is $[A]=1 / 2,[B]=2$ and $[C]=1 / 2$. The reaction proceeds in the $R=8.314 \mathrm{JK} / \mathrm{mol}$, $\mathrm{e}=\mathbf{2 . 7 1 8}$