03. Degree of Dissociation
Chemical Equilibrium

229135 Degree of dissociation of $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ is $\left(K_{\text {acid }}=1 \times 10^{5}\right)$

1 $10^{-5}$
2 $10^{-4}$
3 $10^{-3}$
4 $10^{-2}$
Chemical Equilibrium

229137 The van't $\mathrm{Hoff}$ factor of $\mathrm{BaCl}_{2}$ at $\mathbf{0 . 0 1 M}$ concentration is 1.98 . The percentage of dissociation of $\mathrm{BaCl}_{2}$ at this concentration is :

1 49
2 69
3 89
4 98
5 100
Chemical Equilibrium

229139 At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6}$ moles/litre. The value of $K_{w}$ at $90^{\circ} \mathrm{C}$ is

1 $10^{-6}$
2 $10^{-8}$
3 $10^{-12}$
4 $10^{-14}$
Chemical Equilibrium

229140 The $K_{a}$ of an acid is $3.2 \times 10^{-5}$. The degree of dissociation of the acid at concentration of 0.2 $M$ is

1 $6.0 \times 10^{-2}$
2 $1.26 \times 10^{-2}$
3 $40 \times 10^{-4}$
4 $0.04 \times 10^{-3}$
JIMPER-2004
Chemical Equilibrium

229135 Degree of dissociation of $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ is $\left(K_{\text {acid }}=1 \times 10^{5}\right)$

1 $10^{-5}$
2 $10^{-4}$
3 $10^{-3}$
4 $10^{-2}$
Chemical Equilibrium

229137 The van't $\mathrm{Hoff}$ factor of $\mathrm{BaCl}_{2}$ at $\mathbf{0 . 0 1 M}$ concentration is 1.98 . The percentage of dissociation of $\mathrm{BaCl}_{2}$ at this concentration is :

1 49
2 69
3 89
4 98
5 100
Chemical Equilibrium

229139 At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6}$ moles/litre. The value of $K_{w}$ at $90^{\circ} \mathrm{C}$ is

1 $10^{-6}$
2 $10^{-8}$
3 $10^{-12}$
4 $10^{-14}$
Chemical Equilibrium

229140 The $K_{a}$ of an acid is $3.2 \times 10^{-5}$. The degree of dissociation of the acid at concentration of 0.2 $M$ is

1 $6.0 \times 10^{-2}$
2 $1.26 \times 10^{-2}$
3 $40 \times 10^{-4}$
4 $0.04 \times 10^{-3}$
JIMPER-2004
Chemical Equilibrium

229135 Degree of dissociation of $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ is $\left(K_{\text {acid }}=1 \times 10^{5}\right)$

1 $10^{-5}$
2 $10^{-4}$
3 $10^{-3}$
4 $10^{-2}$
Chemical Equilibrium

229137 The van't $\mathrm{Hoff}$ factor of $\mathrm{BaCl}_{2}$ at $\mathbf{0 . 0 1 M}$ concentration is 1.98 . The percentage of dissociation of $\mathrm{BaCl}_{2}$ at this concentration is :

1 49
2 69
3 89
4 98
5 100
Chemical Equilibrium

229139 At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6}$ moles/litre. The value of $K_{w}$ at $90^{\circ} \mathrm{C}$ is

1 $10^{-6}$
2 $10^{-8}$
3 $10^{-12}$
4 $10^{-14}$
Chemical Equilibrium

229140 The $K_{a}$ of an acid is $3.2 \times 10^{-5}$. The degree of dissociation of the acid at concentration of 0.2 $M$ is

1 $6.0 \times 10^{-2}$
2 $1.26 \times 10^{-2}$
3 $40 \times 10^{-4}$
4 $0.04 \times 10^{-3}$
JIMPER-2004
Chemical Equilibrium

229135 Degree of dissociation of $0.1 \mathrm{~N} \mathrm{CH}_{3} \mathrm{COOH}$ is $\left(K_{\text {acid }}=1 \times 10^{5}\right)$

1 $10^{-5}$
2 $10^{-4}$
3 $10^{-3}$
4 $10^{-2}$
Chemical Equilibrium

229137 The van't $\mathrm{Hoff}$ factor of $\mathrm{BaCl}_{2}$ at $\mathbf{0 . 0 1 M}$ concentration is 1.98 . The percentage of dissociation of $\mathrm{BaCl}_{2}$ at this concentration is :

1 49
2 69
3 89
4 98
5 100
Chemical Equilibrium

229139 At $90^{\circ} \mathrm{C}$, pure water has $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-6}$ moles/litre. The value of $K_{w}$ at $90^{\circ} \mathrm{C}$ is

1 $10^{-6}$
2 $10^{-8}$
3 $10^{-12}$
4 $10^{-14}$
Chemical Equilibrium

229140 The $K_{a}$ of an acid is $3.2 \times 10^{-5}$. The degree of dissociation of the acid at concentration of 0.2 $M$ is

1 $6.0 \times 10^{-2}$
2 $1.26 \times 10^{-2}$
3 $40 \times 10^{-4}$
4 $0.04 \times 10^{-3}$
JIMPER-2004