03. Degree of Dissociation
Chemical Equilibrium

229118 The van't Hoff factor (i) for a dilute aqueous solution of sucrose is

1 zero
2 1.0
3 1.5
4 2.0
Chemical Equilibrium

229116 The degree of ionization of $0.4 \mathrm{M}$ acetic acid will be $\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$

1 $6.71 \times 10^{-3}$
2 $1.6 \times 10^{-3}$
3 $0.4 \times 1.8 \times 10^{-5}$
4 $1.8 \times 10^{-5}$
Chemical Equilibrium

229075 For a reaction at equilibrium
$\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathbf{B}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{C}(\mathrm{g})$
The relation between dissociation constant $(\mathrm{K})$, degree of dissociation $(\alpha)$ and equilibrium pressure ( $p)$ is given by:

1 $K=\frac{\alpha^{\frac{1}{2}} \mathrm{p}^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
2 $\mathrm{K}=\frac{\alpha^{\frac{3}{2}} \mathrm{p}^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}$
3 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
4 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{(1+\alpha)(1-\alpha)^{\frac{1}{2}}}$
Chemical Equilibrium

229076 The overall complex dissociation equilibrium constant for $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is $5 \times 10^{-12}$ the overall stability constant of the complex is

1 $2 \times 10^{-11}$
2 $5 \times 10^{1}$
3 $5 \times 10^{10}$
4 $2 \times 10^{11}$
5 $0.2 \times 10^{11}$
Chemical Equilibrium

229077 The value of Van't Hoff factor for $0.1 \mathrm{M}$ $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution is 2.74. The degree of dissociation is-

1 $100 \%$
2 $92 \%$
3 $87 \%$
4 $74 \%$
Chemical Equilibrium

229118 The van't Hoff factor (i) for a dilute aqueous solution of sucrose is

1 zero
2 1.0
3 1.5
4 2.0
Chemical Equilibrium

229116 The degree of ionization of $0.4 \mathrm{M}$ acetic acid will be $\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$

1 $6.71 \times 10^{-3}$
2 $1.6 \times 10^{-3}$
3 $0.4 \times 1.8 \times 10^{-5}$
4 $1.8 \times 10^{-5}$
Chemical Equilibrium

229075 For a reaction at equilibrium
$\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathbf{B}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{C}(\mathrm{g})$
The relation between dissociation constant $(\mathrm{K})$, degree of dissociation $(\alpha)$ and equilibrium pressure ( $p)$ is given by:

1 $K=\frac{\alpha^{\frac{1}{2}} \mathrm{p}^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
2 $\mathrm{K}=\frac{\alpha^{\frac{3}{2}} \mathrm{p}^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}$
3 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
4 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{(1+\alpha)(1-\alpha)^{\frac{1}{2}}}$
Chemical Equilibrium

229076 The overall complex dissociation equilibrium constant for $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is $5 \times 10^{-12}$ the overall stability constant of the complex is

1 $2 \times 10^{-11}$
2 $5 \times 10^{1}$
3 $5 \times 10^{10}$
4 $2 \times 10^{11}$
5 $0.2 \times 10^{11}$
Chemical Equilibrium

229077 The value of Van't Hoff factor for $0.1 \mathrm{M}$ $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution is 2.74. The degree of dissociation is-

1 $100 \%$
2 $92 \%$
3 $87 \%$
4 $74 \%$
Chemical Equilibrium

229118 The van't Hoff factor (i) for a dilute aqueous solution of sucrose is

1 zero
2 1.0
3 1.5
4 2.0
Chemical Equilibrium

229116 The degree of ionization of $0.4 \mathrm{M}$ acetic acid will be $\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$

1 $6.71 \times 10^{-3}$
2 $1.6 \times 10^{-3}$
3 $0.4 \times 1.8 \times 10^{-5}$
4 $1.8 \times 10^{-5}$
Chemical Equilibrium

229075 For a reaction at equilibrium
$\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathbf{B}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{C}(\mathrm{g})$
The relation between dissociation constant $(\mathrm{K})$, degree of dissociation $(\alpha)$ and equilibrium pressure ( $p)$ is given by:

1 $K=\frac{\alpha^{\frac{1}{2}} \mathrm{p}^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
2 $\mathrm{K}=\frac{\alpha^{\frac{3}{2}} \mathrm{p}^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}$
3 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
4 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{(1+\alpha)(1-\alpha)^{\frac{1}{2}}}$
Chemical Equilibrium

229076 The overall complex dissociation equilibrium constant for $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is $5 \times 10^{-12}$ the overall stability constant of the complex is

1 $2 \times 10^{-11}$
2 $5 \times 10^{1}$
3 $5 \times 10^{10}$
4 $2 \times 10^{11}$
5 $0.2 \times 10^{11}$
Chemical Equilibrium

229077 The value of Van't Hoff factor for $0.1 \mathrm{M}$ $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution is 2.74. The degree of dissociation is-

1 $100 \%$
2 $92 \%$
3 $87 \%$
4 $74 \%$
Chemical Equilibrium

229118 The van't Hoff factor (i) for a dilute aqueous solution of sucrose is

1 zero
2 1.0
3 1.5
4 2.0
Chemical Equilibrium

229116 The degree of ionization of $0.4 \mathrm{M}$ acetic acid will be $\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$

1 $6.71 \times 10^{-3}$
2 $1.6 \times 10^{-3}$
3 $0.4 \times 1.8 \times 10^{-5}$
4 $1.8 \times 10^{-5}$
Chemical Equilibrium

229075 For a reaction at equilibrium
$\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathbf{B}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{C}(\mathrm{g})$
The relation between dissociation constant $(\mathrm{K})$, degree of dissociation $(\alpha)$ and equilibrium pressure ( $p)$ is given by:

1 $K=\frac{\alpha^{\frac{1}{2}} \mathrm{p}^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
2 $\mathrm{K}=\frac{\alpha^{\frac{3}{2}} \mathrm{p}^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}$
3 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
4 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{(1+\alpha)(1-\alpha)^{\frac{1}{2}}}$
Chemical Equilibrium

229076 The overall complex dissociation equilibrium constant for $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is $5 \times 10^{-12}$ the overall stability constant of the complex is

1 $2 \times 10^{-11}$
2 $5 \times 10^{1}$
3 $5 \times 10^{10}$
4 $2 \times 10^{11}$
5 $0.2 \times 10^{11}$
Chemical Equilibrium

229077 The value of Van't Hoff factor for $0.1 \mathrm{M}$ $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution is 2.74. The degree of dissociation is-

1 $100 \%$
2 $92 \%$
3 $87 \%$
4 $74 \%$
Chemical Equilibrium

229118 The van't Hoff factor (i) for a dilute aqueous solution of sucrose is

1 zero
2 1.0
3 1.5
4 2.0
Chemical Equilibrium

229116 The degree of ionization of $0.4 \mathrm{M}$ acetic acid will be $\left(K_{\mathrm{a}}=1.8 \times 10^{-5}\right)$

1 $6.71 \times 10^{-3}$
2 $1.6 \times 10^{-3}$
3 $0.4 \times 1.8 \times 10^{-5}$
4 $1.8 \times 10^{-5}$
Chemical Equilibrium

229075 For a reaction at equilibrium
$\mathrm{A}(\mathrm{g}) \rightleftharpoons \mathbf{B}(\mathrm{g})+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{C}(\mathrm{g})$
The relation between dissociation constant $(\mathrm{K})$, degree of dissociation $(\alpha)$ and equilibrium pressure ( $p)$ is given by:

1 $K=\frac{\alpha^{\frac{1}{2}} \mathrm{p}^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
2 $\mathrm{K}=\frac{\alpha^{\frac{3}{2}} \mathrm{p}^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}$
3 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
4 $\mathrm{K}=\frac{(\alpha p)^{\frac{3}{2}}}{(1+\alpha)(1-\alpha)^{\frac{1}{2}}}$
Chemical Equilibrium

229076 The overall complex dissociation equilibrium constant for $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is $5 \times 10^{-12}$ the overall stability constant of the complex is

1 $2 \times 10^{-11}$
2 $5 \times 10^{1}$
3 $5 \times 10^{10}$
4 $2 \times 10^{11}$
5 $0.2 \times 10^{11}$
Chemical Equilibrium

229077 The value of Van't Hoff factor for $0.1 \mathrm{M}$ $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$ solution is 2.74. The degree of dissociation is-

1 $100 \%$
2 $92 \%$
3 $87 \%$
4 $74 \%$